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Abstract
The population dynamics in a food chain are derived from a sequence of short-run
equilibria of an ecosystem where predator species demand prey biomass, supply
own biomass to their predators and are assumed to behave as if they maximize
net biomass intake. Introducing prices as scarcity indicators for the biomass of
each species enables us to determine a short-run ecosystem equilibrium guided
by prices. Equilibrium regimes differ with respect to their mix of zero-priced
(= abundant) and positive-priced (= scarce) species. The population dynamics
turn out to vary with the prevailing equilibrium regime. Our analysis yields a
richer and more complex population dynamics than the traditional predator-prey

dynamics of the Lotka-Volterra type.
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1 Introduction

Food chains are characterized by predator-prey interactions that are often modeled with
the help of aggregate differential population equations of the Lotka-Volterra type.? These
authors provide a framework which is refined in different ways in the last decades. An
example for recent developments are population equations with ratio-dependent functional
responses (Berezovskaya, Karev and Ariditi 2001, Cantrell and Cosner 2001). Predator-
prey systems of the Lotka-Volterra type provide valuable insights into the dynamics of
interacting populations but their limitations have also been observed: Species interaction
is assumed to be the interaction of populations in the sense that the growth of a given
species does not only depend on its own population but also on the population of its
predator species. But choosing populations as the basic endogenous variables amounts to
disregarding the biomass transactions, and, more importantly, it fails to explain the types

and scales of those transactions.

With the aim of providing a theoretical foundation for the population dynamics,
we are lead by striking similarities between ecosystems and economic systems to model
ecosystems by means of economic methodology: The first important distinction is between
the short and the long term with populations being constant in the short-run while they
vary in the long-run. In economic processes, capital stocks are fix in the short-run period
but investment (net of depreciation) in that period makes capital accumulate or shrink in
successive periods. The analogue of economic capital investment in ecosystems is the net

biomass (number of offspring) a species acquires in the short-run period.

A further similarity between both systems is the relevance of transactions of com-
modities and biomass, respectively, which suggests to look at ecosystems in terms of supply
of a prey’s biomass to predators and of a predator’s demand for prey biomass. We finally
add prices as scarcity indicators for each type of biomass and introduce the assumption
that all species behave as if they maximize their (short-run period) net biomass. With
these ingredients, the ecosystem agents’ optimal demands and supplies can be thought of
as being coordinated by prices. Thus, the concept of a general short-run ecosystem equi-
librium is put forward which is equivalent, in spirit, to the notion of a general perfectly

competitive economic equilibrium.

Implicitly, the equilibrium allocation of biomass transactions completely determines
the net biomass (number of offspring) each species acquired during the short-run period.
When combined with the populations that have prevailed and kept constant during that

period, we end up with a system of differential population equations, one equation for

2The classical Lotka-Volterra model dates back to Lotka (1925) and Volterra (1926).



each species. In other words, we derive the population dynamics from more basic assump-
tions of our model while, in contrast, differential population equations constitute the basic

assumptions of Lotka-Volterra type models.

The methodology of modelling ecosystems as outlined above has been developed
by Hannon (1976), Crocker and Tschirhart (1992), Pethig and Tschirhart (2001) and
Tschirhart (2000, 2002), but the approach chosen here exhibits a number of differences
that will be elucidated below. Our most substantial deviation from earlier work is to focus
on satiation in the demand for zero-priced biomass. This assumption is clearly realistic be-
cause, during a short-run period, predators can hardly forage arbitrarily large amounts of
prey biomass, irrespective of whether they face predation risks themselves or whether their
prey species is abundant. Gurney and Nisbet (1998, p. 161) go on to point out that 'the
functional response of all organisms must extremely saturate at an uptake rate matching
the maximum rate at which ingestate can be processed’. While the satiation assumption
is empirically relevant, it may be viewed, at the first glance, as a minor technical detail
only. However, it will turn out to be highly consequential both regarding the complexity

of the formal analysis and with respect to the resultant population dynamics.

To give a non-technical account of the problem at issue recall first from the economics
of competitive equilibrium that when a market for a commodity is in equilibrium at price
zero, demand matches supply or the commodity is in excess supply. Commodities in
strict excess supply (free goods) are an equilibrium feature because no economic agent
has any use for that excess supply. In contrast, the species that supplies own biomass
is highly interested to ’appropriate’ that excess supply since losing own biomass reduces
own net biomass. Zero-priced prey biomass is therefore a free good for the predator (due
to satiation) but not for the prey, and hence strict market clearing needs to be required

irrespective of whether equilibrium prices are zero or positive.

The important implication of this observation is the impact of the mix of zero-priced
and positive-priced species on the associated population dynamics. Clearly with three
species and the possibility of each equilibrium price being positive or zero we obtain eight
different equilibrium regimes each of which commands a specific set of three differential
equations. Therefore the time path of growing or shrinking populations not only depends
on the set of populations in the initial short-run period but also on the sequence of different
equilibrium regimes the ecosystem passes in time. In other words, accounting for scarcity
(positive price) and abundance (zero price) of biomass makes population dynamics in a

food chain richer and more complex than those assumed in models of the Lotka-Volterra

type.



Section 2 outlines the model of the short-run period, discusses its basic premises and
introduces the concept of general short-run ecosystem equilibrium. In Section 3 such equi-
libria are characterized in a parametric version of that model. Special emphasis is placed
on how the set of species populations, assumed constant in the short-term, determines the
abundance or scarcity of species in the pertaining short-run equilibrium. Section 4 derives
and discusses the differential population equations implied by the model, one equation for
each species, in short-run equilibrium regimes, demonstrating that all these differential
equations are regime-specific. The numerical analysis of population growth of Section 5
exemplifies the time path of the population(s) of one or two species in a three-species food
chain. For given populations of species 2 and 3 the population of species 1 is shown to
induce (no, one or two) switches of equilibrium regimes and to exhibit a logistic growth
pattern similar as assumed in Verhulst-Pearl type of models. When only the population
of species 1 is kept constant, the remaining species grow in various ways (and may or may

not switch regimes) until, eventually, they tend towards a joint steady state.

2 The model of the short-run period

Consider an ecosystem of fixed size where m species form a one-directional non-circular
food chain: Species m feeds on species m — 1, ..., species 2 feeds on species 1, and species
1 feeds on a resource referred to as ’species 0’ in the formal model. To simplify, we choose
the aggregate species rather than the individual organisms of each species as the basic unit

of analysis.?

Following Tschirhart (2000) we define the short-run as that time over which the
populations of all species are constant. In a given short-run period, z;_; is species i’s intake
of biomass of species i—1 (demand), s; is species i’s loss or sacrifice of own biomass* (supply)
to its predators, h; are species i’s costs of searching for food, attacking and handling its prey,

its hunting cost, for short, and d; is species i’s death rate. For any given (h;, s;, ;_1,n;)

dni
hi= o = B (hz',é’i,xz'l;nz) — din;, (1)
dt - - 4 4

is the net biomass acquired by species ¢ in the short-run period under consideration. In
(1) the variables h;, s; and x; ; and the net biomass B’ are measured in biomass units
(e.g. kg) per unit of time ¢. B® is a concave function. The signs of its partial derivatives

(indicated in (1) by plus or minus signs) are straightforward for h;, n; and s;. Regarding

3For more details, see footnote 9 below.
4For i = 1, x; ; is the resource intake of species 1 and for i = 0 , sg = 5 is the fixed ecosystem

endowment of the resource.



T; 1, we assume B’ < 0 for all z; | > 0, B! > 0 for small z; ; and B’ < 0 for large z; ;.
Clearly, species ¢ cannot expand its biomass indefinitely by arbitrarily large prey intake

during any given period.

The function B® represents an aggregate physiological function similar to the one em-
ployed by Hannon (1976), Crocker and Tschirhart (1992) and Tschirhart (2000, 2002) at the
level of individual organisms. Physiological functions account for maintenance, respiration
and metabolism. From an economist’s perspective, B’ resembles a production function in
that the inputs 'biomass of species 1— 1’ and ’food searching effort’ are transformed into the
output 'biomass of species i’. But rather than taking the entire output to the market for
sale (as economic producers usually do), species ¢ offers only the amount s; of its 'product’
for sale (and does so only reluctantly). The remaining biomass 'produced’ is transfered
to the next period (to be specified below). To put it differently, economic entrepreneurs
use inventories mainly as a buffer against asynchronous production and sales. In contrast,

species are preoccupied with piling up their ’inventory’.

The existence and the role of commodities and transactions is strikingly similar be-
tween ecosystems and economies. In ecosystems, the biomass of each species is a commod-
ity and so are resources (nutrients, sunlight, water, etc.). The latter are used as primary
inputs and the former as intermediate factors of biomass production. Transactions take
place via predator-prey interactions which constitute intra-ecosystem trade. Traders either
demand biomass of other species (predators) or supply own biomass (preys). The species
at the top [bottom| of the food chain is a predator [prey| species only® but all intermediate
members of the food chain are both predators and preys. Such an intermediate species i
is prey for species i + 1 and hence is bound to supply own biomass, s; (although it does
so reluctantly only). The predator ¢ + 1, in turn, demands the amount x; of biomass of
species i. Thus we have a commodity, namely the biomass of (prey) species i, and we
have a supply of and a demand for that commodity. In economic models, these are the
essential prerequisites for a market, which doesn’t exist in the ecosystem, of course, in an
institutionalized sense with exchanges of commodities against money. But, returning to
the ecosystem, suppose z; > 0 is species 7 + 1’s unconstrained most wanted intake of prey
biomass (to be specified below as its ’satiation demand’) and consider a situation of excess
demand: z; > s;. Intuitively speaking, species ¢ is then scarce and one needs to introduce
an allocation mechanism capable to bring about the strict equality z; = s; which is neces-
sary for an allocation to be feasible. In economic models the problem of matching demand

and supply is solved by the price mechanism: Competition on the part of demanders (in

5In real ecosystems top predators do die and decay and are eaten by the decomposers. In that sense

they too are prey. This circular flow aspect of the food chain is neglected here to keep the model tractable.



case of excess demand) drives the price up until total demand equals total supply. Simi-
larly, if z; > s; then predator organisms need to compete for prey biomass. We will assume
that all species receive information about scarcities in form of prices that impact on their
opportunity sets and hence on their supplies and demands. As in economic models, our
ecosystem prices have the ultimate function of equating the demand for and the supply
of all species’ biomass. Yet with this approach we need not and do not subscribe to the
notion of an ecosystem consisting of institutionalized markets and real biomass sales and

purchases for (fiat) money.®

To be more specific, denote by p := (pg,p1,...,Pm-1) € R} a vector of prices such
that p; is the price of biomass of species 7+ = 0,1,...,m — 1. Prices are signals of scarcity
(p; > 0) or abundance (p; = 0) and these signals are assumed to be perceived by all
species.” Each species takes as given the price signals and responds to them in a way to
be specified below. On the other hand, all prices are endogenous to the ecosystem as a
whole and adjust until there is a perfect match of demand for and supply of biomass of all

species.

The next step is to introduce hypotheses about the costs of searching for food, h;,

and the supply of own biomass, s;:

hz' = H1 <p1-1, 5171'1> for 1= 1, ..,y (2)
+ 4

$; = min [:EZ-,Ri(pz-,xil)} for i=1,...,m—1. (3)
+ o+

The assumptions H. > 0 and H} > 0 are motivated by the considerations that capturing
more prey (i.e. increasing x;_1) involves greater costs of searching for food and that the
effort of capturing a given amount of prey must be stepped up, ceteribus paribus, with
increasing price p; 1, see also Stephens and Krebs (1986). The way p; ; affects the hunting
costs (2) is indicative of the role of prices in the ecosystem, in general. (2) is meant to
express the hypothesis that for a given intake x;_; the hunting costs species i incurs are
the greater the scarcer the biomass of species i is. Scarcity of biomass 7 is measured in
(2) by p;—1 which is perceived and taken as given by all species i (as well as by all other
species) during the period under consideration. As a consequence, species i’s optimal

demand-supply plan (to be specified below) depends on the vector p € R7 of scarcity

6Tt is interesting to note that the standard neoclassical economic allocation theory also describes a
world without institutionalized markets and (fiat) money, if it is stripped off all (economic) interpretations

that are not essential for its formal structure.
"The assumption is certainly as unrealistic as the often criticized assumption of market transparency

in (most) economic models.



indicators. For given p; > 0, the hypothesis R? > 0 reflects species i’s risk of being preyed
on while foraging. This risk is known as the predation risk of species i (Lima and Dik
1990). Foraging takes time and requires exposure to predators. The more prey is taken in
by species i, i.e. the greater is z; 1, the greater is the (expected) loss of own biomass, s;.
R;, > 0 expresses the view that the predation risk of species i also increases with species
©’'s own scarcity: The rational behind this hypothesis is that p; rises when the predator
species ¢ steps up its demand for biomass 7, and that the prey species 7 cannot help but
yield, to some extent at least, to its predator’s increasing demand pressure. Obviously,
the highest-ranking predator species does not face any predation risk since it lacks natural

enemies; hence s,, = 0.

The equations (2) and (3) can be interpreted as expressing the view that h; and s;
together are species i’s "total price" to be paid for the intake x; ; of prey biomass. The
costs h; are lost to the ecosystem (e.g. energy burnt up by ) while s; represents a transfer
from species i to species i + 1. As specified in (2) and (3) prices do have an impact on h;
and s; with marginal contributions H} > 0 and R}, > 0 (ignoring Z;) respectively. But as
noted before, prices are not something that predators pay for their consumption of prey
biomass in a market place and that the prey receives as a compensation for sacrifying own
biomass. Nonetheless, we consider it appropriate in the present context to refer to the
vector p as prices, because p is endogenous to the model and serves the central function of

equilibrating all demands and supplies (to be formalized below).

Having clarified the "total price" predator i has to pay for x;_; let us also ask what
the prey gets in return. The prey ¢+ —1 doesn’t receive any benefit from its predator species
i but replacing i by i — 1 and i — 1 by ¢ — 2 in (2) and (3) reveals that prey ¢ — 1 doesn’t
offer any own biomass s;_; > 0 and doesn’t incur any costs h;_; unless x;_5 > 0 in the first
place. In other words, by offering s;_; > 0 it acquires the right to a positive amount z;_s
of biomass of species i —2. Species ¢ — 1 is interested in x;_o only but for taking in z;_o > 0
it has to pay the "total price" consisting of h; 1 and s; ;. Obviously all intermediate

members of the food chain are in a perfectly symmetric position.

The min [+, -] specification in (3) has no counterpart in models of competitive economies
and therefore calls for a careful foundation. ; is an upper bound or constraint on the sup-
ply of biomass of species i. This constraint is exogenous from the viewpoint of species i
but will be made endogenous to the model (as clarified in the equilibrium definition below)
in such a way that it is binding if and only if p; = 0. In other words, the min[-, ] term
is designed to prevent markets for biomass to exhibit an excess supply at zero price. As
mentioned above, in competitive economies situations of strict excess supply at zero prices

qualify as equilibrium characterizing the respective commodity as a free good that is of no



use to any agent. If an ecosystem equilibrium would exhibit an excess supply of some prey
species at price zero, this excess supply is not of any use for its predator species, yet the
prey species does appreciate - and is happy about not losing - this ’excess supply’. It only

loses the amount min [R? (p; = 0,x; 1), ;] of own biomass as required in (3).

In view of (1), (2) and (3) the net biomass n; from (1) that species i acquires in the
short-run period under consideration is completely determined by species #’s choice of s;
and x; | for given Z, p € ]RT_l. (Note that s; depends on z; 1 via (3) and therefore z; 1 is
species i’s only effective choice variable). The species’ decision making problem is assumed
to be as follows: For any given Z and p, species i behaves as if it maximizes (1) subject to
(2) and (3).® Clearly, the maximizers z; _; and s; depend on p, n and z. Hence solving the
maximization problem yields demand functions X" !(p,z,n) for i = 1,...,m and supply

functions S'(p,Z,n) fori =1,...,m — 1.

As in case of a perfectly competitive economy we are interested in a situation in which
all markets for biomass clear. More specifically, an ecosystem allocation of transactions
(x*,s*), prices p* and constraints Z is said to constitute a general short-run ecosystem

equiltbrium, if for given populations n,

i = X'(p*,z,n) i=0,1,...,m—1, (4a)
si = S'(p,z,n) i=1,....m—1, (4b)
S0 > xy and pg(So—z5) =0, (4c)
s; = i=1,...,m—1, (4d)
z; = X' (pfz-,f,n) 1=1,....,m—1, (de)

Where ptz = (paa e 7p;(71: O7p;(+15 e 7p;knfl)'

Recall from our discussion of equation (3) above that there is a major difference
between this notion of equilibrium and the equilibrium in perfectly competitive economies:
If in equilibrium the biomass of some species commands the price zero the market does not
exhibit an excess supply because we require the (strict) equality sign in (4d), which implies,
in turn, that a zero-priced biomass is not a free good’ in the same sense as zero-priced
economic commodities are. Observe, however, that due to (4c) the resource (i = 0) may be

zero-priced and in (strict) excess supply in an ecosystem equilibrium just like zero-priced

8The assumption of optimizing behavior of individual organisms has a long tradition in evolutionary
ecology, see Houston and McNamara (1999). To our knowledge, in the context of formal analysis of the
short-run period of ecosystems it has first been suggested and employed by Hannon (1976) and has since
been used in several other studies, e.g. in Crocker and Tschirhart (1992), Tschirhart (2000, 2002) and
Pethig and Tschirhart (2001).



economic commodities in perfectly competitive equilibrium. For convenience we refer to

the zero-priced resource as well as to zero-priced biomass as being abundant.’

As shown in Appendix A (claim A3) the equilibrium condition (4e) sees to it that

the supply constraints are binding (s = Z;) if and only if species 7 is abundant.

3 Characterization of short-run ecosystem equilibria in

a parametric model

Even though our model of the short-run period is quite simple it is hardly possible to obtain
further specific information about the characteristics of a short-run ecosystem equilibrium
unless more structure is placed on the functions B, H* and R’ from (1) - (3). Therefore

we proceed by employing the following parametric functions:

Bi(hi: Sis Ti—1, nz) = (ami - 61{22-71) i1 — hi — si, (53)
Hi(pi—la Tic1) = (€ + fipic1) Tz, (5b)
R(pi,xi1) = gipi+ kixi, (5¢)

where a;, ¢;, €;, fi, 9;, k; are positive parameters for ¢ = 1,2, 3 except for g3 = k3 = 0.

Proposition 1.

@ing — € — JiPi-1 ain; — € — ki — fipi1 .

Define T;  := fip 1; Ti = fip 1; Ti = giPi + ki%i 1, and
C; &

> 2ki(aini — e; — fipi1) — ki — 2cigipi

X' (pispi1) == e, .

For any given vectors p and T: Mazimizing (1) subject to (3), (5a) - (5¢) yields:
Fori=1,2:

(Zi, Ti—q) <
(si,27_4) = ¢ (i, 3 1) and (74,35 1) = I;{ = ¢ X' (pipi1)-
(74, Zi-1) >

9 Another remark on the definition of equilibrium is in order. In the model of the present paper we
choose species rather than individual organisms as the basic units of analysis. A more ambitious and
more appealing approach would provide a microfoundation by taking representative individual organisms
of each species as the basic units of analysis. This route is taken, in fact, by Tschirhart (2000). To see the
consequences of this alternative approach for defining equilibrium, suppose for the moment that the index
1 in our model indicates the representative individual organism of species i rather than species 7 itself.
Then the most consequential change would be to replace (4d) by the equations n;sf = n;;127. (At the
same time one might want to drop n; as an argument of function B? from (1)). The only reason why we
refrain from this approach is to keep the analysis tractable. Observe that for similar reasons large-scale

models of an economy take industries or branches as their basic decision units rather than individual firms.

8



For i =3 we obtain (s%, %) = (0, &9).

Proposition 1 is proved in Appendix A. It provides the solution to all species’ maximization
problems depending on whether the supply constraint z; is strictly binding (@ < X? ()),
weakly binding (Z; = X7 (-)) or not binding at all (Z; > X7 (-)). Observe that the demand
functions X' are single-valued and smooth except when the supply constraint is weakly

binding.

We already indicated in our discussion of equation (3) above that the supply con-
straints T are designed to rule out an excess supply of zero-priced biomass in equilibrium.

As shown in Appendix A, this goal is in fact achieved:

Proposition 2.

Suppose, (p, s*,x*, %) is a short-run ecosystem equilibrium.

— < _ .
pi{ }0 <~ %{ - }Xz(pi,pi—l)-
> >

Propositions 1 and 2 combined with the definition of equilibrium ((4a) - (4e)) enable us
to completely determine a short-run equilibrium. Clearly, the characteristics of such an
equilibrium depend heavily on equilibrium prices being positive or zero. As shown in
Table 1, eight equilibrium regimes need to be distinguished, where an entry "0" stands for
biomass abundance (p; = 0) while "1" indicates biomass scarcity (p; > 0). Recall that in
the short-run period the populations n; of all species i = 1,2,3 are constant. Moreover,
demand and supply functions depend on populations (as can be seen from Proposition 1).
Hence prices designed to equilibrate supply and demand are bound to depend on the size
of populations, too. This observation suggests that, ceteris paribus, a prey species i is the
more likely to be scarce (p; > 0), the greater is the population of its predator, i.e. the

larger is n;41.

Next we will show that for each regime 7, j = 1,...,8, there is a non-empty support
set N; C R3 with the following property: The equilibrium regime j emerges if and only if
the populations prevailing in the short-run period under consideration satisfy (n, ng, n3) €

N;. In fact, all support sets N; are disjoint.



Regime No.

sign p
Do 010j0|10j1|1]11(1
D1 010j1|11]110]01{1
P2 0O117110]010]11{1

Table 1: Feasible equilibrium regimes

To determine the support sets we need to combine the Propositions 1 and 2 with the
definition of equilibrium. We will not work through all eight equilibrium regimes but
content ourselves, instead, with demonstrating the procedure by focussing on the polar

regimes 1 and 8.

Regime 1. Invoking (4e) for i = 0, (4c) and x§ = &o for py = 0 (from Propositions

1 and 2) we conclude that in equilibrium the market for the resource (i = 0) satisfies

. €1 + €150
, or, equivalently, n; < ———.
1 ax

an; —e;

(6)

S0 2
We also know from Proposition 2 that setting p; = 0 for « = 1,2 implies

Q1M1 — €i41 a;n; — €4 k;
<k|——— and hence

Cit1 Ci 2¢;
a;Cit1k; 2cie; — Ciy1ki(2e; + k;) .
Niy1 S n; + , =12 (7)
QAi+16; 2a;41¢

Therefore the short-run ecosystem equilibrium belongs to regime 1, if and only if

(n1,m9,n3) € Ny := {(nl,nQ,ng,) | (6) and (7) are satisﬁed}. (8)
In such an equilibrium the transactions are
Sl =x = G % fori=2,3  and Ty = fm =4 (9)
Ci 1

and the associated prices are (pg,p1,p2) = (0,0,0). This information fully characterizes

the equilibrium regime 1.

Regime 8. We know from Proposition 2 that owing to p; > 0 for 7 = 0,1,2 the
supply constraints Z; and Z, are not binding. Moreover, in equilibrium (4c¢) holds as an
equality, and therefore z7 = s for ¢ = 0,1,2. We apply the appropriate demand and
supply functions from Proposition 1 and obtain, after some suitable rearrangements,

ajny —e; —ky — flpo

= 3 10
e S0, ( a)
ey — ko —
a2M9y €2c 2 f2p1 _ g1p1+k1§o, (10b)
)
asng — €3 —
7 s~ Japn = Gop2 + grkap1 + k1k23o. (10c)

C3

10



These equations jointly determine the equilibrium price vector (pg, p1,p2):

an; —e; — ki — 15

Po = A ; (11a)
b = asng — ey — ko — k150 (11b)
1 — ’
Cag1 + fo
asng — €z — C3I€1]€2§0 — Cagiks AoMNg — €9 — k2 — Cgklgg
Py = c2g1+f2 ( ) (11C)

c3g2 + f3

So far we calculated the equilibrium prices in (11a) - (11c) but we haven’t yet specified Ng,
the support set of regime 8. For defining N; we made use of the conditions z; < X (ps, pi—1),
1 =1, 2, from Proposition 2. In case of Ng the analogous procedure would call for employing
the inequalities Z; > X (p;, p; 1) for i = 1,2 which amounts to placing rather complex
constraints on (n, ny, n3). Note, however, that according to Proposition 2 Z; > X (p;, pi 1)

is equivalent to p; > 0. Hence we take the less complex route and safely define
Ny := {(nl,nQ,ng) | (11a) - (11c) holds and p; > 0 fori = 0,1, 2.}. (12)

The transactions associated to an equilibrium of regime 8 are calculated by inserting prices
(11) into (10):

5w o= % (13a)
- gi(agng — ey — ko) + f2k150’ (13b)
Cog1 + [a
. (cagi + fo) [f3k1kaSo + (asns — e3)ga] + gika(agng — ey — kg — coki150)
Ty = . (].3(3)

(cagr + f2)(c3ga + f3)

The equilibrium prices (11) and the transactions (13) deserve a comment: Since the ecosys-
tem under consideration is a one-directional non-circular food chain, any exogenous shock
to the ecosystem (in form of a change of some parameter) has an impact upstream in
the chain only,'® since p; and z} in (11) and (13) contain parameters with subscript
j=0,...,2— 1 but not with subscripts 7 > i. Consequently, the higher a species’ rank in
the food chain the more it is exposed to downstream shocks, the more its scarcity and the

volume of own biomass transactions depends on what happens downstream.

Quite obviously, our model allows for a rich comparative static analysis of parameter
shocks which in turn generate a great variety of testable hyptheses.!! In applied case studies
it is both important and worthwhile to determine and to test the impact of individual

parameter changes on the ecosystem allocation. The discussion of such issues is beyond

10This is an example of a bottom up food chain which in the biological literature is also called donor

controlled, compare Pimm (1982).
"The complexity of (11) and (13) suggests, however, that the net effects of parameter shifts will not

always be unambiguous in sign.
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the scope of the present paper. Yet we want to briefly indicate the type of comparative
static information contained in (11) and (13) by means of a few examples. An expansion of
the ecosystem’s resource base (an exogeneous increase in 5¢) reduces the scarcity of species
0 and 1 and boosts the market transactions of their biomass. An increase in 5, renders
species 2 also less scarce but 3 may rise or fall. An exogenous increase in n; caused, e.g.,
by immigration intensifies the pressure put on prey species ¢+ — 1 by its predator i to the
effect that the price of prey biomass i —1 rises for 7 = 1, 2, 3 and the associated transactions
rise, too, for i = 2,3. An interesting additional effect can be observed with regard to the
biomass of species 2. Its increasing scarcity upon an exogenous rise in nz tends to be
compensated, if there is a simultaneous exogenous increase in species 2’s own population
which, on the other hand, further expands transactions zj. These effects of exogenous
shocks in ny on the market for biomass 2 appear to be in line with one’s intuition. Their
origin is clearly the positive price elasticity of supply of biomass of species i (g; > 0). Since
by assumption the price elasticity of the resource supply is zero, these effects are missing

in case of species 1.

Since the remaining regimes 2,...,7 are intermediate cases of the regimes 1 and 8,
the methodology of their analysis is now clear from our study of the regimes 1 and 8 above.
We therefore delegate the calculation of equilibrium demands, supplies and prices of the
remaining regimes to the Appendix B and conclude by listing the defining constraints for

all support sets N;, j = 1,...,8, in Table 2.

Regime 1 Regime 2 Regime 3 Regime 4

ny < op ny < op ny < op ny < op

ng < ogny + 03 | ng < 09ny + 03 | Ny = 09Ny + 03 ng > 09Ny + 03

ns S g4M9 + 05 | N3 2 04M9 + 05 | N3 2 OgTla + [ dist + gg | N3 S OgTla + [ dist + og

Regime 5 Regime 6 Regime 7 Regime 8

ny = o1 ny = oy ny = oy ny = o1

Ng > 0y ng < 0y ng < 0y Ng > 0y

N3 < 0gNg + 019 | N3 < 04N + 05 | N3 2> 04N + 05 | Ny 2 TN + 010

Table 2: The support sets of all equilibrium regimes'?

The next section turns to the discussion of the relationship between short-run equilibria

and the time path of species populations.

12The parameters o1, ..., 019 are defined in Appendix B.
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4 The link between short-run ecosystem equilibria and

population dynamics

The information on equilibrium prices, demands and supplies (Appendix B) is now utilized
to calculate the equilibrium values of (1) combined with (3) and the parametric specification
(5a) - (5¢). How this is done is shown in Appendix C for the polar regimes 1 and 8. The

complete set of differential equations, three for each regime, is listed in Table 3.

The findings summarized in Table 3 distinguish the ecosystem model of the present
paper significantly from predator-prey models of the Lotka-Volterra type. The most obvi-
ous difference is that in the latter approach the differential equations are defined on the
entire domain of populations with parameters that are independent of the values attained
by populations. In contrast, the differential equations in Table 3 are valid only on the
support sets of the respective equilibrium regimes. Switching regimes means changing the
population dynamics. Moreover, Table 3 exhibits the following deviating features of our

model:

(i) As in the Lotka-Volterra approach, predator populations impact adversely on the devel-
opment of prey species but the magnitude of that negative effect depends on the prevailing

pattern of scarcity and abundance.

species 1 species 2

R1 (000) 7;L1 = )\1%% — )\in — )\3712 + )\4 h2 = ,uln% — M2Ng — U3M3 + J27

R2 (001) 7;L1 = )\1%% — )\in — )\3712 + )\5 7;L2 == ,ulng — MU5M2 — UeT3 + M7

R3 (011) 7;L1 = )\1%% — )\ﬁnl — )\7712 + )\8 7;L2 = ,ugng — H9Tl2 + ,U/mn% — M117M1
2N — [leT3 + i3
R4 (010) 7;L1 = )\1%% — )\ﬁnl — )\7712 + )\8 7;L2 = ,ugng — M14M2 + /Llon% — M15M71

+ 1201 Ng — feN3 + [h16

R5 (110) | 7y = —ding — Arng + Ag No = pgng — fazNe — KN + [l1g
R6 (100) | 7y = —diny — A3ng + Apo Ty = J1M3 — oMy — 3Nz + flg
R7 (101) | ny = —diny — A3ng + Ay Tg = N3 — [isNg — feNa + f7
R8 (111) | 7y = —ding — Arng + Ag No = HgNg — HigNe — HeN3 + [20

13



species 3

R1 (000) 7.13 = plng — pan3 + p3
R2 (001) | i3 = pan3 — psnz + pena — prng + psnang + po

R3 (011) | ng = pand — pions + p1in3 — prana + p1ani

—pP14M1 + p15M3N2 + p1eN3ny + pP17Nany + P1s

N3 = ping — panz + ps

N3 = ping — panz + ps

(010)
(110)
R6 (100) | i3 = p1n3 — pans + p3
(101)
(111)

N3 = pang — psnz + PeNs — Pria + PsNaNg + Py

- 2 2
Ng = Pang — P19N3 + P2oN5 — P21 + P22N3No + Pa3

Table 3: Population growth of species depending on equilibrium regimes

(ii) The population growth of predator 3 depends on the population of its prey 2 if and
only if species 2 is scarce. The population growth of predator 2 depends on the population
of its prey, if and only if species 1 is scarce and the resource is abundant. This feature
is not characteristic for conventional population models,'? since they do not account for

scarcity and abundance as determinants of population dynamics.

(iii) The population growth of species 1 depends only on the scarcity or abundance of its

prey species, the resource, if and only if species 1 is scarce.

(iv) The observation (ii) does not hold for species 2. As long as its prey species 1 is
abundant, the population growth of species 2 depends on its own scarcity or abundance

only irrespective of the resource being scarce or abundant.

(v) The population growth of species 3 is not affected by the scarcity or abundance of
species 0 and 1, as long as its prey species 2 is abundant. If species 2 is scarce, the scarcity

or abundance of the resource is irrelevant for its growth, if and only if species 1 is abundant.

Although the differential equations listed in Table 3 are not too complicated there is
no easy way to offer a general solution to the growth or shrinkage of species over time. This
is true for the dynamics within one and the same regime and it is also true, a fortiori, for
the dynamics when the ecosystem passes through different regimes. In fact, it is interesting
and important to know what the sequence of regimes is along the time path of populations,
whether the same regime is or can be passed more than once and whether the ecosystem

converges, eventually, to a stationary state.

13Gurney and Nisbet (1998, p. 187) investigate a three-species food chain and discuss similar results.

Of course, their food chain is not based on species’ optimization.
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Table 4 provides some preliminary information on the great variety of viable switches
among equilibrium regimes over time. In that table, 'n; 1+ | Rj — Rk’ has the following
meaning for j,k = 1,...,8: If (ny,ne,n3) € Nj and n; > 0 (for i = 1,2 or 3) over successive
periods such that n; and only n; eventually hits the boundary of N; then (nq,ng, n3) enters
Ny, the support set of regime k. The first row of Table 4 demonstrates that starting
from regime 1 the type of regime switch to occur depends on which population hits the
boundary of N; first. The basic message of Table 4 is that many things can happen: Since
the population dynamics are shaped by the sequence of regimes passed, the actual time
path of all populations crucially depends on the initial values of populations but also on
all parameters, since the parameters determine, ceteribus paribus, which population hits
the boundary of the prevailing regime first. To obtain more informative results we need to

resort to numerical analysis.

nmT|RLI—R6| nsT|Rl—>R4 | n31T| Rl —R2
R2 — R7 R2 — R3 R4 — R3
R3 — R8 R6 — R5 R5 — R8
R4 — R5 R7 — RS R6 — R7

Table 4: Regime switches during population growth

5 Numerical analysis of population growth

In this section we provide six numerical examples. It should be pointed out that the pa-
rameters chosen are not based on empirical estimates. Our aim is rather to clarify the
potential of our equilibrium approach as compared to the well-established models of the
Verhulst-Pearl type (growth of a single species) and of the Lotka-Volterra type (growth
in a predator-prey context). For reasons of comparison with the aforementioned models
as well as for simplicity of exposition we introduce a partial equilibrium component into
our subsequent calculations by keeping two populations (examples 1-3), one population
(examples 4 and 5) constant or exogenously decreasing one population period by period
(example 6). This is clearly a rather severe restriction. But note that keeping two popula-
tions or one population constant does not amount to consider an ecosystem with a single
species or with two species, respectively. In case where only the population of species 1
is endogenous, species 2 and 3 are still present and active in terms of preying and being
preyed. In fact, with n; from (1), n; # 0 is not excluded for i = 2,3. Keeping ny and
ng constant rather means that for ¢+ = 2,3 any endogenous population change is imme-

diately and fully compensated by an opposite flow of members of species ¢ into or out of
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the ecosystem under consideration. These compensating flows may be interpreted either
as migration of species 7 from or into neighboring ecosystems or as the result of a special
harvesting or wildlife care policy of humans designed to keep the populations of species 2

and 3 constant.

Table 5 presents an overview of the examples to be discussed below. The numerical
specification of parameters on which these examples are based is given in Appendix C. The
examples 1 - 3 are built on the same set of parameter values while the parameter values

are reset!? for each of the examples 4 - 6.

Example variable initial | intermediate final regime

no. population(s) | regime regime and steady state
1 n R2 (001) ] R7 (101)

2 n R4 (010) | R1 (000) R6 (100)

3 ns R1 (000) ] R1 (000)

4 N2, N R7 (101) ] RS (111)

5 N1, N R2 (001) ] R7 (101)

6 ni, N3 R8 (111) - R7 (101)

Table 5: Variable populations, regimes and regime switches in examples 1 to 6

We start with fixing two populations which allows us to compare our model with the
Verhulst-Pearl framework of analysis. Before we carry out the numerical calculations of the
pertinent examples 1 - 4 it is worth pointing out that our model gives rise to a parametric
(rather than numerical) solution to this scenario. To see this observe from Table 3 that

the differential equations characterizing the growth of species i is either of type
ng = yn? —dn; + € (14)
or of type
n; = —nn; + 0, (15)

if all populations j, j # i, are kept constant (i, = 1,2, 3). The differential equations (14)

14 Obviously, it is through the appropriate choice of parameter values (and through fixing the initial values

of populations) that the inequalities in Table 2 and hence the initial equilibrium regime are selected.
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and (15) can be explicitly solved. Separating variables we obtain'®

(2 2yn; — 0

—— arctan | ——— for D <0
V-D vV/-D ’

/dt—/L—< __ for D = 0 (16)
) i —ni+e 2yn; — 6 5 -

2")/712 -

—— artanh [ ——— for D >0
| ( = ) |

where D := 6% — 4~¢, and

dn; 1
dt= | ———— = —Z1Inl|—mn; +6|. 17
Jar= ] S = —gnimeso @)

We rearrange (16) and (17) and account for n;(0) = k to establish

276—0
(/=D tan [% tv/—D + arctan (\}T) )} +0
for D <0,

2y
=4 22 ! for D = 0 (18)
n; = — _— - r =0,
2y (295 —0) v
/D tanh | tv/D + artanh (2222 | + 6
[2 ( vD )} for D > 0,
\ 2y
and
9) 0
ni(t) =k ——]exp ™ +=. 19
(0 ( : : (19)

Now we turn to the numerical simulations which are conducted with help of the

computer program Mathematica.'6

Example 1: In regime 2 the resource and the biomass of species 1 are abundant,
po = 0, pp = 0, and the price of biomass of species 2 is positive, ps > 0. Inserting the
parameter values (listed in the Appendix C) into the differential equation presented in

Table 3 (column "species 1", row "R2(001)") and assuming 7. = 30 we obtain

) 1 24
ny = gnf — 4711 + g (20)

The explicit solution of the differential equation (20) is given by the tanh-function in the
third row of (18). According to Table 2, (ny, N9, f3) € N requires ny < oy with oy = 2510.
In the first short-run period we set the population of species 1 equal to ny(0) = 20. The
left panel of Figure 1 shows that during the first time interval [0, 0.6] the population of
species 1 grows slowly but after ¢ = 0.6 we observe an approximately exponential and

rapid growth. From ¢ = 0 to ¢ = 0.77 the population of species 1 has increased from 20 to

15For the solution of the second integral in (16) compare Sydszter, Strgm and Berck (1998).
16The program for simulations is available from the authors upon request.
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ny = o1 = 2510. Since (o071, 79, i3) is a boundary point of Ny and since ny > 0 at ¢t = 0.77
the resource is no longer abundant, its price py switches from zero to positive, implying
that the population vector (nq, nig, i3) leaves Ny and enters N; as defined in Table 2. Now
we use the same parameter values (Appendix C) to determine the population growth of

species 1 in regime 7 as

6275263
’hl = —2711 + T (21)

for ny > 2510. The right panel of Figure 1 illustrates the continuing growth of the pop-
ulation of species 1 in regime 7 and it shows the growth levelling off such that species 1

approaches its steady state level n; = 627526.26.

n1(2) ny (t)

1500
620000

1250
610000

1000
600000

750
590000

500 580000

250 570000

Figure 1: Population growth of species 1 in example 1 (regimes 2 and 7)

Example 2: The differential equations describing population growth in regime 4

(010), regime 1 (000) and regime 6 (100) are, respectively,
n? 13 116

hl == g — Enl — ?, (22&)

) n? 215

ny = gl — 4711 — ?, (22b)
6274761

i = e =2, (22¢)

The solutions to (22a) and (22b) involve the tanh-function and the solution to (22¢) is of
type (19). We start in regime 4 (010) where the resource and biomass of species 2 are
abundant whereas the biomass of species 1 is scarce. The population of species 2 is kept
constant at the level 7 = 600 and the population of species 1 is ny(t) = 30 at t = 0.

According to Table 2 the relevant constraints for regime 4 are:

n < oy = 2510, (23a)
445

Ng = 600 2 O9ny + 03 = 25’/11 - 7 (23b)
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n4 (t) ny (t)

35
800 -

34

600 -
33

400
32

31 200 -

Figure 2: Population growth of species 1 in example 2 (regimes 4 and 1)

nl(t)

620000

610000

600000

590000

580000

Figure 3: Population growth of species 1 in example 2 (regime 6)

For ¢t = 0, the population vector (ny, 7y, 13) satisfies (23a) and (23b) since 30 < 2510
and 600 > 527.5. The left panel of Figure 2 shows that the population of species 1 grows
from the beginning. Therefore, ny is bound to hit the boundary (23b) implying that the
biomass of species 1 is no longer scarce. When the price p; declines to zero at ¢t = 0.14 with
n1(0.14) = 32.9 the ecosystem switches from regime 4 to regime 1. In regime 1 all prices
are zero and species are in a land of utter abundancy. The population of species 1 keeps
growing as shown in the right panel of Figure 2 until the resource gets scarce at ¢ = 0.42.
In regime 1 the population has increased from n;(0.14) = 32.9 to n,(0.42) = 0, = 2510.
At the point in time ¢ = 0.42 the ecosystem leaves regime 1 and enters regime 6 where
the population of species 1 grows at decreasing rates until it converges, eventually, to its
steady state level 62575.5 as illustrated in Figure 3.

Conceptually the left and right panel of Figure 1 are segments of a single diagram

and the same is true for the three diagrams contained in Figures 2 and 3.7 But even

17The only reason for presenting the segments separately is that integrated diagrams are less informative
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without putting all segments together it is easy to see that our growth curve has the shape
of a logistic growth curve quite similar to the curve implied by the generalized Verhulst-
Pearl equation (Verhulst 1838, Pearl 1930, Rosen 1984). There are two main differences
between our result and the ’traditional’ logistic growth curve. First, the latter follows from
a single differential equation. In contrast, our logistic growth curve is implied by more than
one differential equation depending on the number of regimes passed. In example 1 the
differential equation is made up of two segments and in example 2 it is made up of three
segments. The second and more important difference is that our logistic growth curve is
deducted from optimizing species’ transactions in the ecosystem and these transactions
in turn determine whether resources and biomass of species are abundant or scarce. In
contrast, the Verhulst-Pearl equation ignores the impact of scarcity and abundance of

resources and biomass on the population dynamics.

In the next example we demonstrate that another time path of population growth of

a single species is possible.

Example 3: The populations of species 1 and 2 are assumed to be f7; = 100 and

fo = 50 so that the population growth of species 3 is given by
2 , 8 D

=—n5— - —. 24
I (24)

Starting with n3(0) = 15 the left panel of Figure 4 illustrates the decrease in the population

n3

n3. Obviously, the prey population (species 2) is too small to sustain the population of
species 3. Confirming our expectation, the population of species 3 does not go extinct but

converges to a steady state as shown in the right panel of Figure 4.

ns t
14 0.475
12
0.45
10
0. 425
8
t
6 3 4 5 6
4 0.375
2 0.35
t o.325
0.5 1 15 2 2.5 3

Figure 4: Population growth of species 3 in example 3

Example 4: In this example we turn to the population growth of two species. The

ecosystem begins in regime 7 (101), the population of species 1 is assumed to be 7y = 10

due to the need of choosing uniform scales.
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and the growth of species 2 and 3 is given by

1
Ny = §n§ —2.91ny — 0.91n3 + 21.81, (25a)
N3 = 0.04n3 + 0.08n3n5 — 1.99n3 + 0.04n3 — 0.99n5 + 5.95 (25b)

using the parameter values listed in the Appendix C. The population of species 2 turns
out to increase more rapidly than the population of species 3, hits its boundary line o9 =
2.5, and subsequently the populations of both species grow according to the differential

equations of regime 8 (111),

s = —ny — 0.91ns + 9.26, (26a)
n3 = 0.04n3 — 1.86n3 + 3.73. (26b)
na(t), ns(t) na(t), n3(t)
° na(t) na(t)
. ’Il3(t)
1 n3(t)

Figure 5: Population growth of species 2 and 3 in example 4 (regimes 7 and 8)

Population growth in regime 7 is illustrated in the left panel of Figure 5, and growth
in regime 8 in the right panel of Figure 5. Lumped together, the left and right panels of
Figure 5 exhibit logistic growth curve for the population of species 2 (even though the strict
convexity of the curve in the left panel of Figure 5 is hardly visible), and they displays ever
decreasing and eventually fading growth of the population of species 3. Thus example 4
demonstrates that coexistence of species is a feasible outcome of our model. Note that in

steady state regime 8 all biomasses and resources are scarce.

Figure 6 shows the trajectories in regimes 7 and 8 which elucidate that the prey

population (species 2) grows more rapidly than the predator population (species 3).

Example 5: This example is designed to demonstrate that coexistence is also feasible

in ecosystems where at least one species is abundant. Making use of parameter values given
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na(t) na(t)

Figure 6: Trajectories in example 4 (regimes 7 and 8)

in the Appendix C, the population growth is described by

9
hy = %nf — 25m; — 3ny + 155, (27a)

fiy = 9n2 — 250.15n, + 904.48 (27b)

in the initial regime 2. As shown in the left panels of Figures 7 and 8 both populations
grow but the population of species 1 grows faster and therefore n; hits its boundary line
o1 = 350.17 first. After the switch to regime 7 the population growth of species 2 is still
given by (27b) but that of species 1 is now

ny = —10n; — 3ny + 50080. (28)
ni(t) ny(t)
340 5006. 3
5006. 2
320
5006. 1
300
t
2 3 4 5
280 5005. ¢
{ 5005. ¢
0. 0005 0. 001 0.0015 0. 002 0.0025 0. 003

Figure 7: Population growth of species 1 in example 5 (regimes 2 and 7)

The right panels of Figures 7 and 8 display growth in regime 7 where both populations

eventually reach a steady state and Figure 9 provides the information that species 1 grows
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Figure 8: Population growth of species 2 in example 5 (regimes 2 and 7)

ni(t)
ni(t)
4000
340
3000
320
2000
300
280 1000
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0.5 1 1.5 2 ’bQ(t) ; . . rog(t)

Figure 9: Trajectories in example 5 (regimes 2 and 7)

more rapidly than species 2. It is interesting to observe that the examples 4 and 5 exhibit
a common feature: The population growth of the prey species is logistic while that of the

predator species is positive but strictly declining.'®

Example 6: In our last example we study the growth of species 1 and 3 when species
2 is exogenously decreased period by period, say through harvesting. The population of

species 2 is assumed to take the functional form
ns(t) = 100 — 500¢. (29)

The ecosystem starts in regime 8 (111) where all biomasses are scarce. The population
growth of species 1 and 3 is given by

ny U

2
hy = 2%32 +0.0001n3n9 — 9.8613 + 1.15 - 10702 + 0.0002n4 + 0.01, (30b)

18Examples 4 and 5 do not generate ’traditional’ predator-prey cycles. To obtain these cycles one has to
choose a parameter constellation such that in one regime the prey population increases while the predator
population decreases, and such that in another regime the predator population increases while the prey
population decreases. Switching between those regimes would yield cycles. Our conjecture is that these

parameter constellation exist but generating predator-prey cycles is beyond the scope of the paper.
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and we set n;(0) = 300 and ny(0) = 150.

() na(t)
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25

90 20

80
15
70
60 10
50

40

Figure 10: Population growth of species 2 in example 6 (regimes 8 and 7)

Exogenously reducing the population of species 2 which is shown in the left panel of
Figure 10 has two consequences: (i) the amount of predators species 1 faces decreases such
that the population of species 1 increases (see left panel of Figure 11); (ii) the amount of
prey being available to species 3 decreases such that the population of species 3 decreases
(see left panel of Figure 13.) The continuously reduction of species 2 implies that species
2 hits the boundary point ny = o9 = 25.01 at ¢t = 37/250 and the regime switches from
R8 to R7 (101) implying that the biomass of species 1 becomes abundant. In regime 7 the

population growth is then characterized by

o= —% — ng + 225.01, (31a)
2
g = 27;‘1—32 +0.0008n3n5 — 1003 + 0.00004n2 — 0.0004n,. (31b)

The effects we again observe are (i) and (ii) which are illustrated in the right panels of
Figures 11 and 13. At ¢t = 0.2 the population of species 2 goes extinct such that ny(t) =0
for all ¢ > 0.2 and (31a) and (31b) simplify to

h = —%+225.01, (32a)
2
. n3
= B qop,. 2
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Figure 11: Population growth of species 1 in example 6 (regimes 8 and 7)
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Figure 12: Population growth of species 1 in example 6 (regime 7 and ny = 0)
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Confirming our expectation, the population of species 3 goes extinct (see Figure 14),

too, while the population of species 1 runs into its steady state level 448.98 (compare Figure

12).

Figure 13: Population growth of species 3 in example 6 (regimes 8 and 7)

25



n3(t)

25
20
15

10

Figure 14: Population growth of species 3 in example 6 (regime 7 and ny = 0)

6 Concluding remarks

This paper derives population dynamics in an ecosystem consisting of a three species food
chain with explicitly modeled predator prey interaction. Unlike the bulk of the literature
that takes differential population equations as the basic building blocks of modeling ecosys-
tem interaction we aim at a theoretical ’foundation’ of population growth. To that end, we
assume that species behave as if they maximize biomass intake and introduce prices as in-
dicators of scarcity and abundance!® of species’ biomass. Moreover, we make a distinction
between the short run where the biomass transactions take place and the long run where
populations grow or shrink. This methodology is quite familiar to economists who assume,
e.g., the capital stock being constant in the short-run period while they are interested in
the time path of capital formation in the long run. The decisive link between short-run
equilibrium allocations and population growth established in our ecosystem model yields
a set of differential equations governing the population dynamics. In principle, we ob-
tain differential equations which are comparable to those suggested by Lotka and Volterra.
However, while in models of Lotka-Volterra type a single differential equation is intro-
duced (in an ad hoc way), one for each species, we deduce from more basic assumptions a
set of differential equations for each population depending on the pattern of scarcity and

abundance in biomass ‘'markets’.

The numerical analysis of Section 5 is meant to be a methodological contribution
without claiming empirical relevance of the parameters chosen. It does not fully exploit
the rich implications of the ecosystem model presented here, since we made use of the
ceteribus paribus clause regarding population changes. Studying the full-scale dynamics is

beyond the scope of the present paper, and therefore we refrain from drawing generalizing

19The allowance for abundance is a main difference between prior contributions taking the route we have
chosen, especially the works of Tschirhart (2000, 2002).
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conclusions from the examples presented in Section 5. Among the challenging questions
that remain (almost) unanswered here are the following: How does an ecosystem develop
and which regimes does it pass starting from a scenario of utter abundance? Is there a
tendency (or even an ’ecological law’) of diminishing abundance such that each ecosystem
eventually ends up in a state of total scarcity?® (regime 8)? Under which conditions can we
expect stationary states (that are locally or globally stable)? What are the preconditions

for coexistence, persistence and extinction?

It has been stressed that the primary focus of the present paper is on methodology and
conceptual analysis. But empirical applications in case studies ought to be the ultimate end
which is admittedly in great distance but not entirely unrealistic. Tschirhart (2000, 2002)
points to various possibilities of tapping available relevant data to find realistic parameter

values and to test various hypotheses implied by the formal model.
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Appendix

Appendix A: Proof of Propositions 1 and 2

First, we need to introduce some notation. Starting from (5a), let

. . . C.
F'(s4,2i1,7;) = B [Hz (zi-1) 54, %71] = (ain; — e; — fipi1)Ti 1 — 5%2,1 — S

where s; = min [7;, ;] and r; = ¢;p; + kix;_1. Define also®!

C

i — L ()
F (Si =Ti Iz‘—l) = (aini —e; — ki — fipz‘—l)iﬂi—l - 5%_1 — 9iDi,
Fi - L Ci o _
(Si = Zj, Iz‘—l) = (aini — € — fz‘pi—l)fﬂi—l - 5%_1 — T,
. o ain; — e — ki — fipi
Tj—1 = argmax " (Si = G;P; + kixi—la LEi_l) = ,
&)
Fi = gipi + kiZiy,
o~ — i _ = o ain — €; — fipi—1
Ty = argmax F'(s; =Ty, 1) = - )
i
* % A i 7
(51‘ 5 xi—l) = argmax F" (s;, x; 1, 7;) -

From these definitions follows immediately
Fi (S:, LE:_I, fz) = max [FZ (Si = 75, Lfi_l) ,Fi (Si = fi, Lfi_l)]

which is equivalent to

(T4, Tiz1)
Al: (st,2y) = (F1,%i-1) and (P, &1) ¢ <
(T4, Ti1)
>
F'(s8i = i, Ti1) 8 = ¢ F'(si = 74, 24-1) .
<

Making use of the definitions of F*(s; = Z;,%; 1) and F*(s; = 74, Z; 1) it is easy to show

A2: F'($i=2,01){ = ¢ F'(si=fi,8i01) <= 2,8 = ¢ X' (0ipic1),

QkZ(aan — €; — fipi—l) - k? - 2ngzpz
2Ci

where X' (p;, pi_1) := . Next we show

21'We restrict our attention to interior maximizers, in what follows. Boundary solutions may play a role,

too, in particular when the focus is on species extinction.
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A3: If (p, s*, x*,Z) is a short-run ecosystem equilibrium, one has

o e =

Proof of A3: The equivalence of s} = z; and p; = 0 is straightforward from (4b), (4d) and
(4e). It remains to show that s < z; iff p; > 0.

Sufficiency. p; > 0 implies Z; = X' (p_;, Z) < x}. Moreover s} = x} via (4d). Hence

Necessity. sf < z; and 7; = X' (p_;, ) yields sf < X' (p_;,Z). The equilibrium

)

condition s = zf = X'(p,Z) cannot be secured unless p; > 0 since X(p,T) is strictly

declining in p;.

We now combine A1l and A2 to obtain

A4: If (p, s*, x*,Z) is a short-run ecosystem equilibrium, then
(T, T4-1) <
(S:aqu) =9 (%, %) and (74, Ti_1) = ;8 = X' (pi,pic1)
(74, Zi-1) >

which constitutes the core of Proposition 1. In view of A3 and A4 it is straightforward to

specify the relationship between the sign of the price p; and the sign of Z; — X (p;, pi 1)

as follows:
A5: If (p, s*, 2*,Z) is a short-run ecosystem equilibrium, then
< =
i = ¢ X' (pipia) =  piy = 0
> >

— < _.
pi{ }0 = ﬂfz{ - }XZ (pis Di1) -
> >

Appendix B: Characterization of short-run ecosystem equilibria

Demands and supplies.
Demands and supplies are listed in Table 6 and 7.

Equilibrium prices.
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For obvious reasons we only need to focus on positive prices. If p; > 0 in some regime

under consideration we equate demand and supply and solve for the price to obtain:

Regime 2.
Dy = azCong — a203k2n2 — Cg€3 + C3k2(62 + I{JQ) (33)
co(csga + f3)
Regime 3.
P a9CiMNo — alcgklnl — 61(62 + kg) + C2]€1(61 + kl)’ (34&)
ci(cagh + fo)
- A3CaN3 — AgCskang — Coes + C3ko (€2 + ko + flpl)‘ (34D)
co(csga + f3)
Regime 4.
. a9CiNo — a102k1n1 — C (62 + k2) + C2k1(€1 + kl)
P = . (35)
c1(cagh + f2)
Regime 5.
— e — ki — 15
Po = aing — € 1 0150, (36a)
fi
b = asng — ey — kg — C2k1§0‘ (36D)
c2g1 + fo
Regime 6.
b = an; —e; — ki — 0150. (37)
fi
Regime 7.
— e — ki — 13
po = a1ny —eé1 1 0150’ (38&)
fi
Py = azComNg — agc3k2n2 — C9€3 + Cgkg(eg + kg) ‘ (38b)
c2(csg92 + f3)
Regime 8.
— e — ki — 13
Py = an; —e; fl 1 0150’ (39a)
b = asmng — €9 — kg — C2I€1§0’ (39D)
cagr + fo
asng — ez — cskikaso — 29K2 (qomy — eq — ko — ok 5
Py = c291+f2 ( ) (39C)

392 + [3
Parameters defining the support sets of equilibrium regimes.

For each regime 7, 7 = 1,...,8, Table 2 lists three inequalities defining the support set of
populations of that regime. The procedure of how to obtain those inequalities is demon-

strated in section 3 for the regimes 1 and 8, resulting in (8) and (12), respectively. The
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calculations for the remaining regimes 2, ..., 7 follow the same methodology and can be ob-

tained from the authors upon request. It suffices here to define the parameters oy, ..., 019
used in Table 2.
e + kl + €150 alcgkl 61(62 + kg) - Cgkl(el + kl)
o' =———————, 02:= ; 03 1= 5
aq 9Cq asCy
agesks ez — czhp(ea + ko) _ Gacsks ascs fiko
04 1= y 05 1= y 06 +— - )
a3Cy ascy asCy azca(cagr + f2)
S a1¢o¢3 f1kiko oo (263~ cska(ey + ko) cafiky [eki(er + k1) — ci(eg + ko)
7 , U8 -— - 3
azcica(c291 + fo) a3Co a3Cy c1(c2g1 + f2)
b= &2 + kg + c2k150 S (cog1 + f2)(es + k3 + c3kikoBo) — cagika(ea + ko + c2ka30)
9 = , 010 1= .
a az(cag1 + f2)

Appendix C: Population growth depending on equilibrium regimes

Since equilibrium allocations are regime-specific, the population changes (1) associated
to those equilibrium allocations are regime-specific, too. To determine these changes, we
start with regime 1 as characterized in Section 3. Recall, that in view of (1), (3), (4) and

Propositions 1 and 2 we have

. Ci _ .
ng = (amn; —e; — fipic1) Tiey — 5%2_1 —x;—dmn; fori=1,2, (40a)

. c
ng = (a3n3 — €3 — f3p2) Ty — E?’x% — d3ng. (40b)

From (9) we invoke z¥ | = (a;n; —e;)/c; fori = 1,2,3 and 7; = X* (p_;, 7, n) = (@411 —
€it1)/ciy1 for i = 1,2. We insert Z; and z}_, into (13) and set p;, = 0 for i = 0,1,2 to

obtain, after some rearrangement of terms,??

7;L1 = )\171% - )\in — )\3712 —+ )\4, (41&)
g = pang — fiang — paNs + fia, (41b)
h3 = pina — panz + ps. (41c)

The equations (40) constitute a system of differential equations that completely describe

the population dynamics for all (ny, ng, n3) € Nj.

To fix our ideas we consider species 3 and suppose that n3 > 0. We then infer from
(41c) that ng > 0 for all future periods implying that ns will eventually violate (7). In other
words, we are bound to leave regime 1 at some future date. The signs of n; and n, cannot
be as easily determined as the sign of n3 because for ¢+ = 1,2 the time path of n; depends
on the time path of n;,;. For the time being it suffices to make the following observation:

Suppose the ecosystem is endowed with (ny,n9,n3) € Ny in some initial (short) period

22The parameters ), p1 and p used in the subsequent analysis are defined at the end of Appendix C.
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such that the associated equilibrium belongs to regime 1. Then the population dynamics
unfolding in subsequent periods are described by (40). Populations may shrink® or grow
and if a population grows sufficiently the price of its biomass becomes eventually positive
which is tantamount to saying that the prevailing vector of populations is no longer in NV,
and that, as a consequence, the population dynamics are no longer adequately described
by (40).

At the very point in time when (n,ng, n3) leaves the set N the vector (ny, ng,ns)
is bound to enter the support set IN; of some other regime j # 1. Unless some species
gets extinct, the ecosystem is bound to leave regime 1 heading either?* for regime 2, 4 or
6. Since it is by no means clear, a priori, which the sequence of regimes is passed by the
ecosystem in the course of time, all regimes need to be fully specified in terms of both their

equilibrium properties and their specific population dynamics.

To spell out the population dynamics prevailing in regime 8 we can take over equation
(40b) but we need to substitute (40a) by

n; = (aini —e —k; — fipi—l) Ti—1 — 7T,

Next we insert the appropriate prices from (11) and the biomass demands from (13) into

(40b) and (42), respectively. Following simple but tedious calculations we obtain

hl = —dml - )\7712 + )\9, (43&)
Ny = [igng — [ligTa — [lgTi3 + fiao, (43b)
ng = p4n§ — prong + ,020713 — P21M2 + P22N3No + Po3. (43c)

Comparing the differential equations (40) and (42) reveals that the equation of motion of
ny is distinctly different across both regimes. For ny the equation of motion is qualitatively
the same in both regimes but in case of species 3 we observe a dependence of ng on ns in

regime 8 which was absent in regime 1.

Parameters defining the differential equations.

a? ae a e? e? es+ k
)\1 )\Q—dl—*—i)\:} 2)\42_ 1+—)\5 1+2 2
2(31 Co 261 Co 2(31 Co
L aiei(cag1 + f2) + a1 foaky . wg
)\6 = dl + y N7 — T T
c1(cag1 + fo) c2g1 + fo

er(cagr + fo) + (2e1ky + k7)) fo — cogik} 4 2191 (ea + k)
2¢1(c291 + f2)

231f n; < 0 for some 4 at some date ¢ it may happen that n; < 0 for all future periods such that species

)\8 =

b

1 will not survive in the ecosystem under consideration.
24The ecosystem may even switch from regime 1 to regime 3, 5 or 8 but the simultaneous passing of

more than one boundary line is extremely unlikely.
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es + ko + k15 152 €135 e
)\9::91(2 2 210)—}-10,)\10::30(l€1+10)—}-—2,
c2g1 + fo k2 Co
18 €2 +
)\11 I:§0<l€1+ 10)"‘ 2 2.
2 Co
2 2
a ase a e e
NI::2_27N23:d2+ 22,#3::_3M4::—2+_37
Co Co C3 262 C3
o as fa(es + k) + ascsergs a3y
ps = do + e = —————
ca(cs92 + f5) c3g2 + f3
= (€2 + k2)® f3 + c3g2(e3 — k3) + 2c2e302 g = a3c2g7
7 LA b 8 LA —’
co(csga + f3) 2(cag1 + f2)?
1o = dy + 291001 asC3gako I ascs f192ko
9 .— W2 - )
ci(cagi + f2)2 calesga+ f3)  calcagn + f2)(c392 + f3)
Iy 1= ajco f3k3 = ay fakion a192k1
10 = s M1t = - )
2c1(cog1 + f2)? G(cagr + f2)? ci(cagr + f2)(csg2 + f3)
1y = 10263 fag1k1
c1(cagr + f2)?’
a? €302 — C3Gaks [62 + ko + fl(C2k1(fll(if;:;;;eﬁh))
i3 = =+ ;
200y (cogr + fo)? c2(csg92 + f3)
fa = dy+ g1 s ay fak1aa g = a3 k3 | es
U=+ —————F, 15 ‘= 57— 35, M6 ‘= -+
c1(cagr + f2)? A (cagn +2f2)2 2056} (cagr + f2)? 2¢2 3
a1 Q3 1 o 9 €3
frg = dy — o i ;:_[7_k}+_,
! ? (c2g1 + f2)? ' 2¢y [ (cogn + f2)? 2 C3
li1g = dy + 429104 as¢3619ak2
19 = d2 — 3
(cogh + f2)?  (cog1 + f2)(c392 + [3)
a? N €392 + c3gokikaSo — % (e2 + ko + cok150)
igo = :
20 2¢a(cagr + f2)? c392 + f3

where oy 1= c1¢291 (€2 + k2) + cafoki(er + k1), ag = c1c0e201 + Cafoki(en + k1) — ¢ fako,

as = foko + cafok150 — co€201, Qi = cog1(ea + ko) — co fak1 5.

2 2 2.2
as ases €3 a3C39gs
pri=o - pri=ds+ ——, p3i= o pyi= —— o,
P2 T e 7T 2y 2(c392 + f3)?
05 = dy + a3gais 6 == a%C3f3,2k% oy = as fskocvs
5: =03+ ———————5, P6 ‘= y PTIE g
ca(c392 + f3)? 2¢5(csg2 + f3)? 3(csg2 + f3)?
a203¢3 f392k2 P a? o = ds + azgoig
= —————5 P9 = y Pro i =daz + ——,
ca(c392 + f3)? 20303(0392 + f3)? 392 + f3
(ascsoh — b aafshy — Bl
P11 = » P12 ' = Qg
2c3¢5(c392 + f3)? ca(c3g2 + f3)
Pr 1= a%%fff??’“%k% P = a ayf1fskiks
13 1= , P14 1= Qg ;
2¢1(cogr + f2)2(0392fj:kf3)2 c1(cag1 + f2)(c3g2 + f3)
asc,
o ascs faka — ﬁ o 103020392 f1 fak1kz
P15 ‘= a3gs y P16 =

c3g2 + f3 c1(cag1 + f2)(c392 + f3)’

oy e (a e faks — a263f1f3/€2> ( a1 f1fskiks ) pig 1= %
17 ° 2C3 [3K2 201 + fa cr(cagy + fo)(csga + f3) ) 18 2¢3¢3(c392 + f3)’
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2. 12 279
azgo Q7 a5c3 f3 97 k3

pro i=d3z + —————— poo = ~, po1 =

(c3g92 + [f3)? 20 2(c392 + f3)%(cagr + f2)
a2a3¢3 39192k g = O‘%
y P23 -— )
(c392 + f3)?(c2g1 + fa) 2¢3(c392 + f3)?

where a5 1= caczes92 + c3 fska(ea + ka),
C3f1f3/€2

ci(cag1 + f2)

c3f3g1ko _
—— (eg + kg + CleSO .
c2g1 + fo ( )

P22 =

Qg = CaCze392 + C3f3ka(ea + ko) —

a7 1= c3e3go — C3 fsk1kaSy +

as f3g1kocrr

(c3ga + f3)*(cog1 + f2)’

[c1(eg + ko) — cokyi(er + k1),

Numerical values of parameters used in the examples of Section 5.

(a) Parameter values for the examples 1 and 2

a; = 2, A9 = 4, az = 4 C1 = 10, Cy = 50, C3 = 60, d1 = 2, d2 = 2,

d3 = 2, €1 = 10, €y = 10, €3 = 10, f1 = 1, fg = 10, f3 = 20, g1 = 1

go=1, ki =10, ko =100, So=500.

(b) Parameter values for example 3

As in (a) except that go = 1 is replaced by g = 0.

(c) Parameter values for example 4

ap :]_, 02:1, a3:1 C1 :1, 62:1, 63:0.1,

d3:]_, 61:1, 62:1, 63:10, flz]_, f2:1,

go — 1, kl = 1, kQ = 1, So = 0.5 ny = 10 712(0) =1

(d) Parameter values for example 5

01:3, (ZQZG, 03:4 C1:10, C2:2,
d2 = ]_00, d3 = 2, €1 = 50, €y = 50, €3 = ].00,
f3 = 02, g1 = 20, go — 20, kl = 05, k2 = 10,

n(0) =50 ny(0) = 0.5.

(e) Parameter values for example 6

Cll:]_, 02:1, Clg:]_ 61:]_, ngl,
d2 = 1, d3 = 10, €1 = 1, €y — 5, €3 = 0,
f3 =10, g =1, 92=1, k=1, k=001,

n5(0) =100 n3(0) = 150.

d1 = ]_, d2 = 1,
f3 = g1 = Oa

C3 = 2, d1 = 10,

f1:57 f2:5a
5o = 100 n3 =200

C3 = ]_, d1 = 05,
fl - 157 f2 - 5:
50=20 m(0) =300

The specification g, = 0 in (b) is an auxiliary assumption that needs to complement

the assumption of keeping population 2 constant in (b) while the population of the predator

species 3 is endogenous. A growing predator population drives up the price for prey

biomass. If the price elasticity of supply were positive and non-vanishing an ever increasing

intake of prey biomass would induce unlimited growth of the predator species which is

only due, however, to the simplifying assumption that the population of the prey species

1s constant.
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9¢

R1 R2 R3 R4
Do 0 0 0 0
f1<X1 f1<X1 leXl leXl
f2<X2 .’Z’QZXQ fQZXQ f2<X2
" ain; —e; an; —e; an; —e; — ky an; —e; — ky
0 R RN
C1 C1 1 1
- asMNy — €9 asng — €9 — ko asng — e — ko — fopr agng — e — ko — fopy
! Co Co Co Co
" asng — €3 asnsz — ez — faps asnz — ez — f3po a3nz — €3
? C3 C3 C3 C3
oMo — €9 aoM9g — €9 — k2
S1 — . gip1 + kixo gip1 + kizgo
2 2
aszn3g — €3 asng — €
So . gapa + koxy gapa + koxy 073
3 3
7 ANy — €9 asng — €3 — ko asng — € — ko Q2N — €9
1 e e Jete T2
Co Co Co Co
7 aznz — €3 aznz — €3 a3nz — €3 a3nz — €3
9 iR o e o0 78 o0 e
C3 C3 C3 C3
— k1(2a1n1 - 261 — k‘l) /fl (2@1”1 - 261 — k‘l) k1(2a1n1 — 261 - /fl) k1(2a1n1 — 261 - /fl)
! 2cy 2cq 2cq 2¢
b k2(2a2n2 — 2e9 — k2) k2(2a2n2 — 2e9 — k2) k2(2a2n2 —2ey — 2fop1 — k2) k2(2a2n2 —2ey — 2 fop1 — k2)
§ 202 262 202 202

Table 6: Demands, supplies and supply constraints in regimes 1 - 4




LE

R5 R6 R7 RS
Do 1 1 1 1
D1 1 0 0 1
D2 0 0 1 1
leXl i‘l<X1 i‘l<X1 leXl
i‘2<X2 i‘2<X2 IEQZXQ l‘QZXQ
. any —er — ki — fipo any —er — ki — fipo ayny —er — ki — fipo ayny —er — ki — fipo
0 1 c1 1 C1
" asng — €9 — ko — fopr A2MNo — €9 asng — € — ko asng — €3 — ko — fopr
' Co Co &) &)
T azng — €3 azng — €3 asng — e3 — f3po asng — e3 — f3po
2 Ca Ca C3 C3
2Ny — €9 agny — eg — ko
S1 g1p1 + kixo e g1p1 + kixo
Co C2
asng — €3 asng — €3
So T T g2p2 + koxy g2p2 + koxy
_ a2M2 E €9 a2M2 E €9 agny — eg — ko agny — eg — ko
x —_— —_—
' Co Co C2 C2
_ azng — €3 azng — €3 a3ng — €3 a3ng — €3
x —_— —_— —_— —_—
? C3 C3 C3 C3
< k1(2a1n1 —2ey — 2fipo — k1) | k1(2a1m1 — 2e1 — 2fipo — k1) | k1(2a1n1 — 2e1 — 2fipo — k1) | k1(2a1n1 — 2e1 — 2f1po — k1)
! 201 201 201 201
\7 k2(2a2n2 — 262 - 2f2p1 — /fg) k‘Q(QCLQTLQ - 262 - k'Q) k‘Q(QCLQTLQ — 262 - k'Q) /fg (2&2”2 - 262 — 2f2p1 — k'Q)
i 202 202 202 262

Table 7: Demands, supplies and supply constraints in regimes 5 - 8




