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Abstract

Based on economic methodology we model an ecosystem with two species in
predator-prey relationship: mice feed on grain and grain feeds on a resource. With
optimizing behavior of individual organisms a short-run ecosystem equilibrium is
defined and characterized that depends on the farmer’s use of fertilizer and on
the mice population which, in turn, is affected by pesticides. In that way, a
microfounded agricultural production function is derived. Linking a sequence of
short-run ecosystem equilibria yields the growth function of the mice population
which is thus derived rather than assumed. In each period the farmer harvests all
grain in excess of some given amount of seed. If she maximizes her present-value
profits, optimal farming is shown to depend on the prices of pesticide and grain. It
is either optimal to use no pesticide or a moderate amount of pesticide or to apply
a chattering control. Pest eradication is never optimal. On the other hand, if the
farmer takes into account steady state mice populations only, it may be optimal
to eradicate mice or to use no or a moderate amount of pesticide depending on
prices as well as on the shape of the grain production function which is determined

by micro parameters of grain reproduction.
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1 Introduction

The economic pest management literature has focused on controlling the growth of a plant
and its predator when predators cause major damage by consuming plants (Hall and Nor-
gaard 1973, Feder and Regev 1975). The measures for enhancing crop growth that have
received most attention in the literature are pesticides and fertilizers. Despite the rich lit-
erature in this field there is an ongoing discussion about specifications and functional forms
of agricultural production functions, in particular about the relationship between crop re-
sponses to pesticides and fertilizers. For econometric studies of crop responses to the use
of pesticides we refer to Babcock, Lichtenberg and Zilberman (1992) and Carrasco-Tauber
and Moffitt (1992). For studies of crop responses to the use of fertilizers see Berck and
Helfand (1990) or Chambers and Lichtenberg (1996).

In that literature the ecological system is described by dynamic stock-flow relation-
ships which are macro level approaches because they take populations as basic endoge-
nous variables and hence disregard the microstructure of intra-ecosystem transactions. In
contrast, the present paper develops a microfoundation of population growth and links
this population growth to the application of fertilizers and pesticides. Building on Han-
non (1976), Crocker and Tschirhart (1992), Tschirhart (2000, 2002, 2004), Finnoff and
Tschirhart (2003a, 2003b) and Eichner and Pethig (2003, 2004) we employ the economic
concepts of prices, optimizing behavior and equilibrium to explain the interactions of or-

ganisms in predator-prey relationship.

To be more specific, there is a pest species called mice, somewhat allegorically, and
a farmer who grows crops (called grain). He harvests the grain at the end of each short-
run period leaving some constant quantity of seeds for the next period. Mice feed on
grain and grain feeds on a vital base resource whose supply can be augmented by applying
fertilizer. In the short-run period the mice population is constant and the representative
individual organisms of mice and grain behave as if they maximize their net-offspring as
price takers choosing their prey biomass demand and the supply of own biomass subject
to some constraint. The effect of pesticide application to the field is that grain taken up
by mice hampers their capacity to reproduce which reduces, ceteribus paribus, the growth
rate of mice and hence the future aggregate amount of grain they forage. For any given
application of fertilizer and pesticide, the aggregate net offspring of mice being generated
at the end of each period constitutes the change in mice population and thus explains the
dynamics of the mice population. In other words, the short-run periods serve to determine
net offspring along with the flows of prey biomass and resource intake with all populations

being fixed. The population dynamics - which are here the dynamics of the mice population



only because the 'grain population’ is kept constant through harvesting - naturally emerge
by considering the temporal sequence of short-run periods. Since these population dynamics
are specified for any given level of fertilizer and pesticide the links between farming activities
and the growth of grain and the mice population are simultaneously established. Thus, our
model generates an agricultural production function that accounts for the direct and indirect

impact on the growth of grain of fertilization and pesticides, respectively.

After that production function is derived, the paper proceeds to analyze the farmer’s
profit maximizing pest control. If she maximizes her present-value profits, optimal farming
is shown to depend on the prices of pesticide and grain. It is either optimal to use no
pesticide or a moderate amount of pesticides or to apply a chattering control which calls
for switching between applying no pesticides at all and applying the maximum amount of
pesticides. An extinction strategy (which is feasible because the immigration of mice from
other patches is ruled out) would be too expensive and is therefore suboptimal. On the
other hand, if the farmer takes into account steady state mice populations only, it may
be optimal to eradicate mice or to use no or a moderate amount of pesticide depending
on prices as well as on the shape of the grain production function which is determined by

micro parameters of grain reproduction.

In summary, the paper provides three major contributions. First, it develops a mi-
crofoundation of population growth in a predator-prey system with economic-ecological
interactions; second, it derives a microfounded parametric agricultural production function
and determines its properties; finally, this production function is employed to characterize

the farmer’s optimal pest control in a dynamic setting.

The paper is organized as follows. In Section 2 we present the short-run model of
the ecosystem and derive the population growth functions and the agricultural production
function. Section 3 investigates the farmer’s dynamic pest control problem, Section 4 studies

the farmer’s steady-state pest control problem and Section 5 concludes.

2 Growing crops in an ecosystem with pests

Consider an ecosystem inhabited by mice in which a farmer grows grain on a field of given
size. Mice feed on grain and grain 'feeds on’ a resource such as sunlight, minerals or water

or other nutrients.

To specify the grain-mice interactions we first consider a short-run period, a point

in time, where the populations of grain and mice are constant. Since all organisms of



a species are assumed to be identical, it suffices to focus on representative organisms.
During the short-run period every organism produces net offspring that increases with the
amount of prey-biomass intake and declines with the amount of own biomass sacrificed to
predators. More specifically, let the net offspring of the representative grain, g, and that of

the representative mouse, m, be given by!

g = z] (Zg - Zg) — Wy (1)

m = [(1 = cns)2y" (Zm — 2m) ™" — wn. (2)

For ¢+ = r, g the demand for prey biomass is x;, where r stands for the resource which is
called the prey species of grain, for convenience. For j = g, m the supply of own biomass
is z;. v, p €]0,1] and ¢, > 0, Zy, Zm, Wy, wm > 0 are parameters. s is the amount of
pesticide the farmer applies to the field to restrain or prevent mice from feeding on grain.
The impact of pesticides on net offspring of pests can be and has been modeled in various
different ways (Feder and Regev 1975 and the literature cited therein). In (2) the underlying
assumption is that pesticides are directly related to grain consumption of mice and that
the net offspring of mice induced by any given grain consumption is the smaller the more
pesticides are applied to the field. At each point in time nature makes available the same
amount of the resource, ro > 0. This natural supply is normalized, for convenience, by
setting 7o = 1. However, the farmer can augment that supply by applying fertilizer f. In
that case total supply is 7 =ro+ f =1+ f. Thus, f > 0 and s € [0,1/¢,,] are activities at

the farmer’s disposal. For the time being these variables are kept constant.

The biomasses of all species are viewed as commodities traded in a system of compet-
itive markets, where ’intake of prey biomass’, z, translates into ’demand for prey biomass’
and ’loss of own biomass’, z, is interpreted as ’supply of own biomass to predators’. The
biomass transfer activities (z,, z,) and (x,, 2,,), the organisms are engaged in, are subject

to the constraints

(L= 0gpg)eq +pg2g = prvr, (3)

In (3) and (4), §; > 0 and e; > 0 for ¢ = g, m are constants. p,, p, and p,, are non-
negative scarcity indicators called prices, for the resource and the biomass of grain and
mice, respectively. All prices are taken as given by the organisms while they are endoge-
nously determined by the competitive mechanism that will be specified further below. For

0; = 0 the constraints (3) and (4) look exactly like budget constraints of consumers in

LFor a similar specification of the net offsring functions (without pesticides) and further interpretations
of this approach see Christiaans, Eichner and Pethig (2005).



the microeconomic theory of households, where e; would denote exogenous income and p,,
py and pp, would represent market prices at which the consumer can sell or purchase the
respective products.? However, since the ecosystem model is not monetized (a property
which it actually shares with the neoclassical model of the economy!) prices and incomes
are denominated in virtual units of account. To see that the isomorphism between con-
sumers and organisms of nonhuman species makes sense, observe that (in case of 6; = 0)
the ’exogenous income’ e; reflects an organism’s predation power in the sense that for any
given price of prey biomass this income determines the amount of prey biomass, e,/p, or
em /Dy, the organism is capable to purchase without being forced to sacrifice own biomass.
However, purchasing prey biomass beyond that amount requires to sacrifice own biomass.
This implication of the constraints (3) and (4) readily reflects what ecologists refer to as

the organism’s predation risk.

In case of a positive (and constant) parameter 6;, organism i’s ’exogenous income’
is still e;, if and only if p; = 0. Otherwise it is (1 — 6;p;)e; < e;, and it becomes even
negative, if p; exceeds some positive threshold value. The idea behind that hypothesis is
that the scarcer is the biomass of the organism under consideration, that is, the higher is
the predation pressure on that organism and hence the higher is p;, the more it is forced
to yield own biomass to its predators possibly to such an extent that it is not compensated
for its sacrifice by an intake of its own prey ’in exchange’. The size of #; will turn out to

have an important impact on results in Section 4.

Grain organisms maximize (1) subject to (3) with respect to x, and z, which yields

their demand for the basic resource and their supply of own biomass,

Py _ e - ¢
T, = p_gyzg +fyp—g, zg = egfy + 720 — (1 — ’y)p—g, (pr > 0,pg > 0), (5)
T T 9

where Zg

rise to the mice’s demand for grain and their supply of own biomass,

= Z, — e,0,. Maximization of (2) subject to (4) with respect to x, and z,, gives

ty = P S a = el + 2l — (1= ), (py > 0,p > 0),  (6a)
Py 9 m
Dy
where 28 = z,, — €0,

It is useful to briefly check how grain organism ¢ adjusts its demand and supply to

2The counterpart of ’supply of own biomass’ in the economic consumer theory would be ’supply of labor’.



parametric changes in prices and in its constraint parameter 6;. (5) readily yields

% 0z % ox, ox,

>0 =0 >0 <0, — <0 d
20, " op, " op, 00, " op M
ox, _ _
o, ; 0 = zz = Z, — €40, ; 0. (7)

According to (7) a grain organism increases its supply of own biomass as well as its demand
for prey biomass as a response to an increase in either p, or 6, if and only if 0, < 0~g =
Zy/€e, > 0. In that case rising scarcity of grain (dp, > 0) has two opposing effects on grain
net offspring. That offspring is reduced by the increased loss of own biomass (9z,/0p, > 0)
but it is fostered by an increase in prey biomass intake (0x, /dp, > 0). The response of grain
to growing predation pressure is then to build up more pressure on its own prey. On the
other hand, if 6, > 9~g, an increase in scarcity (dp, > 0) reduces net offspring inadvertantly
and reduces the pressure of mice on the resource. In this sense grain can be called a weak

or a strong species depending on whether 6, > 0~g or 6, < 0~g.

A short-run ecosystem equilibrium is constituted by a vector of transactions (z,, z,,

Tg, Zm) and prices (p,, pgy, Pm) such that (5) and (6) satisfy the market clearing conditions

ngt, = l4+r=Ff (8a)
NmTy = MNgZg, (8b)
MTm = NmZm- (8¢)

Equation (8c) demands equilibrium on the market for mice biomass, where ny,, denotes
total demand of mice biomass by all members, n;, of some species that preys on mice.
However, in the food chain studied here mice are the top predators by assumption and
therefore there is no species, developing a demand for mice biomass. Yet it is interesting
to see with the help of (8¢) how the nonexistence of a market for mice biomass is derived
as a natural implication of the formal model. Let n, be the population of a species, say
buzzards, that would prey on mice if it would inhabit the ecosystem. Since it doesn’t, we
set np = 0 which implies z,, = 0. For that reason (8c) is satisfied if and only if z,, = 0.
Sufficient for z,, = 0 is p,, = 0 which is just another way of saying that a market for mice

biomass doesn’t exist.

The next step is to calculate equilibrium prices and quantities. To facilitate notation,
it is convenient to introduce at this point already the assumption that in every period the
farmer harvests all grain in excess of some given grain population (transferred as seed to
the next period) which we normalize to be n, = f,. Hence we set n, = i, in (8a) and

(8b) and insert the demand and supply functions (5) and (6b) into the market clearing



conditions (8a) and (8b) to obtain the equilibrium prices

Ng€gZg + N €m 20 noe (1 —
pr:’Y( 9% * g)’ pg:ngeg( :Y)+nmem, — ()
TZg Zg

where Z, 1= e,0, +vz). In view of (8), (5) and (6b), the equilibrium transfers are

r Nm€mZg
€T = —, Zg = y 10a
" 7 7 ngeg (1 =) + nmem (102)
g, = -2 fimCm %y 2 = 0. (10b)

N Tgeg(l —7) + nmen’

In (9) and (10) we have fully specified the equilibrium allocation of the short-run ecosystem
model. To see the rich implications of that model and its predictive power we summarize
some selected comparative statics in Table 1. The first row of that Table introduces small
parameter changes (exogenous shocks) and the first column lists the equilibrium adjust-

ments of all endogenous variables to these shocks.?

deg | Oey, | 0Zy | Or | Ong | Oy, | 00,
o |2+ + |+ | = |+ | + | -
Oy | 2+ + | = 0|+ | + | -
ox, 0 0 0 |+ 1| — 0 0
org | 7, — | + | + | 0] + - +
Ozg | 20— | + | + | 0| = | + | +

%The second sign in this row is obtained in the special case
6, =0.

Table 1: The comparative statics of the short-run ecosystem equilibrium

Leaving out some detail and special features of Table 1 the principal results of the exercise

in comparative statics are:
(i) If the ’exogenous income’ e; of organism i = g, m increases, then
- all prices increase,

- organism i benefits either through a reduction of own biomass loss (in case of

i = g) or through an increase in biomass intake (in case of i = m).

(i) If the population n; of species i = g, m increases, then

3For example, the box associated to the fifth column and fourth row contains the information dz,. /0r > 0,

i.e. an exogenous increase in the supply of the resource induces a rise in consumption of the resource by

each mouse.



- all prices increase,

- organism ¢ reduces its market transactions, while organism j # i expands its

market transactions.
(iii) If the parameter 6, increases, then
- all prices decrease,
- all organisms expand their market transactions.

The next step is to link consecutive short-run periods to focus on the growth (or
decline) of species over time. This population update is done by simply inserting (10a) in
(1) and (10b) in (2):

: 7 — ) (Ng€9Zg + Nmem 2’ o
g g:<1—|—f> [(1 V) (ngegZ, + mmg)] —w, = G(f.nm), (11a)

g g ngeg(l =) + nmem

. — s o

n Ng€em~z

T~ = (1 — ¢,,8)" 9m=9 2 — W 11b
N m = (1= cms) {ﬁgeg(l—fy)+nmem] #m v (11b)

It should be emphasized that the differential equations (11) are solely built on the informa-
tion that - and do not use any other information than that which - has been introduced in
the model of the short-run period to determine the behavior and the transactions of individ-
ual organisms. In that sense the population growth functions (11) are microfounded. They
are derived from more basic concepts whereas conventional models of population ecology

start out with population growth functions as their basic concepts.

We now wish to characterize n,, as a function of n,,. Define [-] := fige, (1 —7) +nmem,

for convenience of notation, and differentiate (11b):

dng,

B (1 ) (yemz {11~ nmeit [}~ o (12)
d?n,, _ e N 1-pp1-p—1 N (1 + 1)
T = ) (i) e 117 {2 P o g

It is obvious from (11b) that n,, = 0 is satisfied for n,, = 0 as well as for

l-p
s
n = N(s) = (1 cps)ingz, o — LW (14)
Wi €m

Note also that gZ—Z > 0 at n, =0, if and only if (1 — ¢,,5)*(ngey25)" (Ngeqy(1 — 7)2g)H* < Wiy
which will be assumed in what follows. When combined with (13) and the observation that

Nnm = 0 at n,, = 0 and at n,, = n;’ this assumption proves that n,, is an inverse u-shaped



function of n,, with n$, representing the carrying capacity of mice.* Hence we established

that for any constant application of pesticide, the mice population exhibits logistic growth.

G(f,nm) as defined in (11a) is the net offspring of the representative grain organism
which is determined by fertilization and by the mice population. The total grain available
at the end of the period under consideration is n,G(f, ny,) which therefore represents the
farmer’s short-run or rather instantaneous production function. In the literature on agri-
cultural production the notion and study of pesticide productivity plays a prominent role
(e.g. Carrasco-Tauber and Moffitt (1992), Babcock et al. (1992)). It is therefore all the
more intriguing that in our model the grain production function is independent of pesticide
use, s. This property G, = 0 is a consequence of our assumption on the impact of pesti-
cides on mice net offspring in (2). Due to this modeling approach all biomass demands and
supplies in (5) and (6) are independent of s and so is also the equilibrium allocation (9) and
(10). However, the observation that G is independent of s does not mean that pesticides do
not matter. It rather means that the use of pesticides affects the production of grain only
through its impact on the mice population, n,,. That population is constant by assumption
in the short-run period but it changes in time according to the growth function (11b) which

clearly depends on s.

To sum up, in the present model the use of pesticide affects short-run grain produc-
tion not directly (G5 = 0) but only indirectly through its impact on the mice population
dynamics. Taking a closer look at that production function we characterize the function G

as follows:

Proposition 1.
(i) G(f,ny) is strictly increasing and strictly concave in f.

(ii) (a) G(f,ny,) is strictly decreasing in ny,.

(b) G(f, ny) is strictly convez (concave) in ny, if and only if 6, < (>)4,
— ZgNg(2—7) + Zg
2nmem+ngeg(1—7)y eg’

4As defined in (14), the carrying capacity depends on - and is hence explained by - the characteristics
(micro parameters) of both grain and mice in a complex way. That gives rise to a variety of interesting

testable hypotheses which will not be elaborated here, however.



Proof: Differentiation of G' with respect to n,, yields after some rearrangement of terms

7 - _ 1—7y)(gegZg+nmemz8) ] ~7
G (L) (1= 7)egem [7 — (1 = 7)) L2 Recetptmnen)] (15)
" [ngeq,(1—7) + nmem]2 '
K —)(RgegZg+nmem?Z. =1
<i> ﬁg(l o 7)3696% [29 - (1 — 7)59] [(1 Y(gegZg+nmem 3)}

g fgeg(1—)+nmem

Gnmnm —

[ngeq(1 —7) + ”mem]4
[Zymg€4(2 = 7) 4+ 20 2nmem + ey (1 —7)7)] - (16)

Observe that G,,, < 0 due to z, — (1 —7)2) = 72,4+ (1 —7)ey0, =: 2, > 0. In addition, we
find

Go,on § 0 = Zggeq(2 — ) + Zg (2nmem + fgeq(1 — 7)) § 0. (17)
Using z) = z,—e,40,, the condition on the right side of (17) is equivalent to Qnme’zi%(j;]?iﬂh +
7 <
o s 0o n

The negative impact of the mice population on the growth of grain is as expected
(Gy,, < 0in Proposition 1). Not so clear is, however, whether the mice population hampers
the growth of grain more than (convex) or less than (concave) proportional. Ceteribus
paribus, the curvature of G depends on the parameter 6,. Sufficient for the convexity of
G is 0, < 0, := z,/e, which characterized mice as a strong species (as noted above). The

weaker the mice species is the more likely it is that G' becomes strictly concave in n,,.

3 Optimal dynamic pest control

Consider now the farmer’s grain growing activity. She faces the instantaneous production
function n,G(f, ny) with G (+) from (11a). Owing to our simplifying assumption that in
each period the farmer retains the amount n, of grain to be transferred as seed to the
next period, the grain for sale in the market is n,G(f,n,) — 7y (which will be assumed
to be nonnegative). The farmer also takes into account the equation of motion (11b), the
constant and time-invariant prices for grain, 7, for fertilizer, 7, for pesticides, 7, and she

solves

max/ e [y (RgG (frs Mmt) — Tg) — Tp fr — masy) dt
0

ft:st
subject to 0 < s; <1/,  1m(0) = nyno € [0, 1],
' (1 = cs)" s e (18)
Nt = M, — CmS — z — Wm ¢,
' ’ ngeg(1 —7) +nmem| ™



where n,0 € [0, 7,,] and where 72, = N™(0) denotes the maximum value of n,, with the

function N™ given by (14). The current-value Hamiltonian

H=mn, [ﬁgG(fm Nomt) — ﬁg] — Ty fr — TSy

_ N I
+ Mot {(1 — CpS)H [ 1gCmZg ] Zin_“ — wm}

ngeg(l — ) + npem

is strictly concave in f; if 7, > 0 because G is strictly concave in f;. As (1 — ¢,,8)" is
strictly concave in s;, the Hamiltonian is strictly concave (strictly convex) in s; if A, > 0
(A¢ < 0). Since H can be written H = H*(f;)+ H?(s;), that function is additively separable
in f; and s;. Hence maximization of H requires to maximize H' with respect to f, and H?
with respect to s; without the need to consider cross partial derivatives. Maximization of
the Hamiltonian is thus possible for an interior value of f;, which will be assumed, while a

boundary solution with respect to s; will emerge if A\; < 0.

Optimum Conditions In order to simplify notation, the time index ¢ will be suppressed.

Necessary optimum conditions are

Hy = 7m4ngGy(f,nm) — 75 =0, (19)
max H (npg,, f,s,\), (20)
. Ng€m?Z K
A=0\—m,n,G, m) — AL (1 —¢ps) A 22—
oG (o) = 3 (1 = e | e
) (1 — e 8)H e, zL+ Ng€mZg a (21)
Ngeg(1 =) + nmenm [ Mgeg(1 — ) + nmem
The derivative of H with respect to s is
NgCm? K
Hy = =ty — MipCn (1 — Cops)" ™! I g Zm - 22
T (1 = ) {ﬁgeg(l — ) + Nl #m (22)

Convexity of the Hamiltonian We begin by proving that A < 0. Suppose on the
contrary that A\ > 0 at some time #;. If A = 0, equation (21) implies that A > 0 (as
G, < 0) and therefore A > 0 for all ¢ > ¢;. Thus, we may as well suppose that A > 0 right
from the beginning. This implies that H; < 0 for all s € [0,1/¢,,); hence, s = 0 maximizes
the Hamiltonian and n,, converges to n:’ = N,,(0) > 0 according to (14). Owing to (21),

A asymptotically follows the differential equation

i ss sl—p 5 5 ®
A= 6 — 1y Gy, (f,155) +\ ——mHCmZm _ TymZ :
T ey (1 =) 4 e [ Tgeg(1 =) + e
=:C1 ~ ~
=:Co

10



where C < 0 and C5 > 0 are constant. As we are in a steady state when n,, = 0 and s is

constant, the optimum conditions also require A = 0. This implies

\ = TgTgGhn,,, (f; 7)
0+ Cs

a contradiction. Thus, A(¢) < 0 for all ¢ and the Hamiltonian is strictly convex in s due to

<0,

our assumption p €]0, 1].

Linearized Problem Before we further explore the convex control problem stated above
we first analyze an easier-to-handle, linearized version in which p €]0, 1] is replaced by

p = 1.° Substituting (1 — ¢,,5) for (1 —¢,,s)* in (11b) yields the current-value Hamiltonian
H = 7,(n,G(f,nm) —ng) — s f — mss

TgCom? a
+ AN 3 (1 — s g9 } Zﬁn_“—wm}, 23
¢ {( ) [ﬁgeg(l—v)wanem (23)

which is strictly concave in f and linear in s. Note that at the boundaries s = 0 and
s = 1/c¢y, the solutions of the convex and the linearized problem coincide. For simplicity,
we assume an interior solution with respect to f. According to (19), it is then possible to
insert the optimum value f* as a function of 7;/7, and n,, into G, yielding a problem that
is pre-optimized with respect to f. The pre-optimized problem contains just one control

variable, s.
Defining

A(np) =7, (ngG(f*,nm) — ng) — s f*, B(ny) == —ms, =5

_ ~ I
Ng€mZg ] 1—p
_ zm
ngey(1 — ) + npmem

a(Ny,) = Ny, [ — NynWms

_ 5 m
PR M P
ngeg(1 —7) + nmem

and applying the transformations
M(np) == A(ng) — a(nm)B(nm) /b(nm), N(ny) = B(ng) /b(nm)
puts the problem into the form

max /0 M () + N(ng )i dt

S

subject to 1, (0) = Ny € [0, i), (24)

N € {a(ny) +b(ny)s | s €10,1/cnlt,  nm € [0, Ty

5Linear crop production functions with limiting inputs are widely used and estimated in the agricultural
literature, e.g. in Lanzer and Paris (1981) and in Grimm et al. (1987). These so-called linear response and
plateau or von Liebig models refer to a plant’s response to nutrients, however, while in our approach y =1

linearizes the net offspring function of the representative mouse.
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This problem can be handled using Proposition 2 stated below, which relies on Theorem 3.2
and Note 3.2 in Feichtinger und Hartl (1986, pp. 68-73) adjusted for the present purpose.
That Proposition 2 employs the notion of the fastest possible adjustment path (FPAP)
with the following intuitive meaning: A FPAP to another given path n? (¢) is a path n}*(t)

that at any instant ¢ comes closer to n},(¢) than any other path n}™(¢).

Proposition 2.

(i) Let q be a natural number and let Ty, - . ., Tungs Tom1, - - -, Tumg—1 be admissible solutions

of°
ON (nm) + M'(ny,) =0,

satisfying N1 < Mm1 < Mz < Nz < ... < Mgt < g and

>0 1 Ny, € ﬁ/mi,,/ﬁmi or Oénm</ﬁ/m;
SN () + M () f (Fni—15 Fmi) 1

<0 if Nm € (Muniy i) 0T Tng < Ny < Ty

Then, if it exists, the FPAP to one of the equilibria Tuy, . .., Mye 15 the solution of
(24).7

(i1) If there is an additional solution fimg > Nmg (Mmo < Tum1, Tespectively) of
ON (np) + M'(ny) =0,

N 08 bounded from above by fiy, < oo (from below by 0, respectively) and SN (ny,) +
M'(ny,) > 0 (SN(0) + M'(0) < 0, respectively), where ny > fupg (0 < My, Tespec-
tively), the FPAP to one of the equilibria Ny, ..., Mg or to Ty, (0, resp.) is the
solution of (24).

(i11) If N (ny) + M'(ny) > 0 (ON(ny,) + M'(n,) < 0, respectively) for all ny, € [0, Ty,
the FPAP to n,, (0, respectively) is the solution of (24).

For the problem at hand, the functions M and N are given by

M(nm) = 70y [gG(f*, i) — Tiy] — T f* + s { { NgemZy }“Z}n# _ i} ’

ngeqg(1 — ) + nyen, Cm

Ts

N(np) =

_ ~ m
[ Tg€mZg ]
_1— —
CmMm<Zm K ngeg(l - ,Y) + Nmem

6M' denotes the derivative of M with respect to n,.
"In addition, the condition lim;_, . e~% f:m( n N (z)dz > 0 must be satisfied for any optimum singular
level 7, and any admissible solution n,,(t). Since for the present problem N(z) is always positive and

bounded from above except for x = 0, this condition is always met.
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The condition N (n,,) + M'(n,,) = 0 is equivalent to

I
=0.

Tslhem NgemZg

Ngeg(1 =) + nmem [geq(1 — ) + nmem

ON () + 7 [NgGi,, (f* m) — Tig] +

For G, (f*,ny,) we refer to equation (15).

Unfortunately, analytical results are hardly obtainable except for the result lim,, g
IN(nm)+ M'(n,,) = +o0o. For that reason, we present in the following a numerical example
based on the parameter values: § = 0.05, ¢, =€, =1,y=p=0.5,n,=1,0, =0, =0,
Wy = Wy = 50, Zg = Zy, = 10000, 7, /7 = 0.5. First observe that from (19) we infer that it
is optimal to use no fertilizers at all, f* = 0. The function dN(n,,) + M'(n,,) is presented

in® figures 1-3 for different price ratios 7, /m;.

Case I: If w,/ms is sufficiently close to zero, it is optimal to apply no pesticides at all.

If 7y/ms > 0 but very small, N (n,,) + M'(n,,) can be shown to be positive for all n,, €
[0, 72,5, and the shape of the N (n,,) +M'(n,,) curve is as depicted in Figure 1. In that case
the FPAP to n, is optimal according to part (iii) of Theorem 1. Recall that n, = N™(0)
by definition, where N™(0) represents the carrying capacity of mice for s = 0 according to
(14). Hence both in the short run and in the long run it is optimal to apply no pesticides
at all.

dN(n,)+M'(n,)

Figure 1: The numerical example 7, /7, = 0.00001

Note, however, that the farmer will not become active unless the present value of her
profits along the optimal path is nonnegative. In the polar case 7y = 0, 7 > 0 and 7, > 0

(hence m,/ms = 0) the farmer’s instantaneous profits, 7, (2,G(fi, i) — 7ig) — Tpfr — Tss4,

8Figures 1-3 are freehand drawings emphasizing the main properties of the function 6N (n.,) + M’ (ny,)

in a stylized way only. The exact plotted graphs can be obtained from the authors upon request.
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are obviously negative for all points in time in which she would choose f; > 0 or s, > 0. With
very large my and very small 7, the price ratio 7,/m, is small and can be made arbitrarily
close to zero. But when 7, /7, approaches zero, there is some small positive threshold value
of m,/ms, say (m,/ms)" such that present value profits are negative if and only if 7,/7, is
less than (7,/7)". To demonstrate that Case I is not void we set m,/m, = 0.00001 in a

numerical example and calculated the associated present-value profit as 0.00049.

Case II: If m, /7, is neither too small nor too large, it may be optimal to switch from zero
pesticides or mazximum pesticides to an intermediate application of pesticides.

For a certain range of values of 7 /7, the N (ny,) + M'(n,,) curve exhibits two points of
intersection with the n,,-axis as illustrated in Figure 2 for «,/7s = 0.01. In that case part
(ii) of Proposition 2 applies according to which either (a) the FPAP to the first intersection
point 7,1 or (b) the FPAP to the maximum population 7, = N™(0) is optimal.

In case II(a) the optimal pest control path crucially depends on the initial mice pop-
ulation n,,q. Suppose first n,,0 < My,1. It is then optimal to set s, = 0 during some initial
time interval as long as n,,,; < N,,1. Under that policy the mice population will grow until
eventually, say at t = ¢, n,,f = 7,1 is reached. Then it is optimal to switch from s = 0 to

some suitable s €]0,1/c¢,,[ for all ¢ > ¢.

8 N(n, )+M'(n,)

Figure 2: The numerical example 7,/7; = 0.01

Suppose Now, nu,g > N,1. Under this condition it is optimal to set s, = 1/¢,, during
some initial time interval as long as n,,; > N,1. As a consequence of that policy, the mice
population will shrink until eventually, say at ¢ = ¢, n,,7 = T, is reached. Then it is

optimal to switch from s = 1/¢,, to some suitable s €]0,1/¢,,[ for all ¢ > t.

Consider now the Case II(b) where the FPAP to 7, is optimal. That scenario is

14



obviously identical to Case I described above. As in Case I one needs to take care of the

non-negativity condition of present-value profits.’

Case III: If my /7y is sufficiently large, it is optimal to apply a positive but moderate amount
of pesticides along the entire time path.

Figure 3 shows for 7 /7, = 20 that the 0N (n,,) + M’'(n,) curve intersects the n,,-axis
exactly once at some 7,1 €]0, [ According to part (i) of Proposition 2 for ¢ = 1 the
FPAP to n,,; is therefore optimal. The optimal pest control is the same in qualitative terms

as the optimal policy in Case II(a) described above.

8 N(n, )+ M'(n,)

ml

S

Figure 3: The numerical example 7, /7, = 20

Convex Problem We now reintroduce the assumption p €]0, 1] to reconsider the original
convex optimization problem. Note first that those solutions {s;} of the linearized problems
that involve intermediate values s €]0,1/¢,,[ for some time interval or for the entire time
path are no candidates for a solution to the convex problem since such paths {s;} cannot
maximize the Hamiltonian of the convex problem. Solution candidates for the convex prob-
lem are necessarily boundary solutions, either s = 0 or s = 1/¢,,. When this observation
is combined with the fact that the values of the linearized and the convex problem must
coincide in case of boundary solutions we conclude that if a boundary solution is optimal
for the linearized problem, it is optimal for the convex problem, too. Thus, whenever s, = 0
for all ¢ > 0 is the optimal solution of the linearized problem (the Cases I and II(b) above),

it is also the optimal solution of the convex problem.

9Two additional special cases should be briefly mentioned. If the initial mice population happens to

equal iy, Or fiy, (in Figure 2) s €]0,1/¢,[ or s = 0 is optimal right from the beginning.

15



While this result gives us a partial characterization of the solution to the convex
problem, we have not yet any information about the solution to the convex problem under
parameter constellations in which the linearized problem exhibits an interior solution during
some time interval. Progress can be made by applying Theorem 3.4 of Feichtinger and Hartl
(1986, p. 79) which reads, adapted to the present context:

Proposition 3. As the optimum value of the convex problem can never coincide with the
optimum value of the linearized problem in case of an interior solution, the linear optimum
constitutes an upper bound of the convex problem. This upper bound can be approrimated
arbitrarily closely by choosing a chattering control: the farmer should switch as often as pos-
sible from s = 1/c¢p, to s = 0 observing the condition that the average level of s corresponds

to the optimum level of s for the linearized problem.

Chattering pest control consists of alternating time intervals of massive use of pesticide
and no use of pesticide at all. Heavy pest control is exercised after the pest population has
significantly grown, and it is continued until the pest population is sufficiently decimated.
Then an interval follows with no application of pesticides at all, allowing the pest population
to recover and grow until eventually a new round of massive pest control is due etc. Casual
evidence for this kind of pest control can be found in practice. The interesting feature of
Proposition 3 is in this context that conditions are spelled out under which a chattering
pest control is optimal. Intuitively speaking, the relevant condition is that the strategy of
a two-interval sequence of massive control followed by zero control is less expensive than
the alternative strategy of continuous moderate application of pesticide over both intervals
provided that both strategies generate the same yield. The economic advantage of the
chattering control over a moderate continuous control is shown to depend on the specific
way in which pesticides impact on the net offspring of mice and on the functional form of
the net offspring function of the representative mouse (u = 1 versus p €]0,1/¢p,[). Tt is also
worth pointing out that the properties of the instantaneous grain production function with
respect to n,, as derived in Proposition 1 do not seem to play a role in determining which

type of pest control is optimal.

4 Optimal steady-state pest control

In this section we assume that the farmer ignores the adjustment path to the steady state
and accounts only for steady-state mice populations in her profit-maximizing calculus. This
strategy is the better an approximation for problem (18), the faster is the adjustment to the

steady state. To explore that case we insert n, = N™(s) from (14) into n,G(f, nm) — 7,
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and interpret it as the farmers’s long-run production function. The farmer now solves for

f and s the static Lagrangean
L=m,[n,G(f,N"(s)) —ng| —msf —mss 4+ p(1 — ). (25)

Proposition 4.

(i) There is a choke price (m3/7y), > 0 of pesticide in terms of grain such that it is optimal

to apply no pesticide, if and only if (ns/my) > (7/7,),-

(ii) If (ms/mg) < (ms/mg), and , > 0, with 6, as defined in Proposition 1(ii)(b), the optimal

pest control is s = 1/¢,, implying the eradication of the entire mice population.

(iii) If (ms/my) < (7s/my), and O, < 0,, s = 1/c, (eradication) is also optimal for suf-
ficiently small 7s/m,; otherwise a moderate use of pesticide is optimal securing the

mice’s survival.

Proof: Central to the proof of Proposition 4 is the curvature of G (f, N™(s)) with respect

to s. Combining the derivatives

d
Y9 -G, N™  and
ds

d?g
— =G . N"+G, N
ds? mNm* Vs + m* Y ss

with (14) and Proposition 1 we find that

(i) G(f,N™(s)) is strictly increasing in s, and

A~

(ii) G (f, N™(s)) is strictly concave (convex) in s if and only if 6, < 8, (6, > 6,).

The rest of the proof of Proposition 4 is straightforward.!° [

Comparing the optimal dynamic pest control and the optimal steady-state pest control
exhibits remarkable differences. In dynamic control mice eradication is never optimal. In
contrast, steady state control eradication is always optimal unless (i) 6, < 6, and (ii) 7, /7,
is moderate but doesn’t exceed (m,/m,) . Surprisingly, the size of the micro parameter 6,
specifying feeding characteristics of grain in the presence of predation turns out to have
an impact on optimal steady state farming while that parameter does not influence the

qualitative properties of the optimal dynamic pest control.

0Note that the first order condition of (25) may characterize a local minimum or a local maximum of

profit while the global maximum is attained as a corner solution where mice are eradicated.
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5 Summary and extensions

This paper provides both a microfoundation of predator-prey population growth which de-
pends on pesticides and fertilizers and a microfoundation of the agricultural production
function. It turns out that the production function may be either concave or convex de-
pending on species micro parameters. A convex function makes it optimal to kill the entire
pest population when the farmer restricts her attention to steady states. Solving the full
dynamic optimal pest control problem, the farmer either applies no pesticides at all or
uses the chattering pest control which requires to switch as often as possible between no

pesticides and the maximum amount of pesticides.

There are several extensions of our model which are worth mentioning. First, one
could add a third species, say buzzards that feed on mice. In such an extended model an
interesting issue would be to compare conventional farming, i.e. the use of fertilizer and
pesticide, and green farming, e.g. improving the living conditions of buzzards (Pethig 2004).
Another promising extension would be an analysis of indirect effects of pesticides. If the
resource is water, pesticides may contaminate that water and impair the growth of grain.
Another impact of pesticides could consist in a reduction of grain quality. The grain price,
T4, may be positively correlated with quality (hedonic price function) to the effect that the
grain price falls with the quality of grain deteriorating after the use of pesticides. When the
farmer faces shrinking revenues from selling grain it might be profitable for her to use less
pesticide. Such a tradeoff between falling sales prices and increasing the quantity of grain
(of decreasing quality) through pesticides tends to reduce the application of pesticides. This
effect is capable to foster organic farming provided the quality-price link does materialize

in the market place.
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