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Abstract
In this paper we develop a micro ecosystem model whose basic entities are rep-
resentative organisms which behave as if maximizing their net offspring under
constraints. Net offspring is increasing in prey biomass intake, declining in the
loss of own biomass to predators and Allee’s Law applies. The organism’s con-
straint reflects its perception of how scarce its own biomass and the biomass of
its prey is. In the short-run periods prices (scarcity indicators) coordinate and
determine all biomass transactions and net offspring which directly translates into
population growth functions. We are able to explicitly determine these growth
functions for a simple food web when specific parametric net offspring functions
are chosen in the micro-level ecosystem model. For the case of a single species our
model is shown to yield the well-known Verhulst-Pearl logistic growth function.
With two species in predator-prey relationship, we derive differential equations
whose dynamics are completely characterized and turn out to be similar to the
predator-prey model with Michaelis-Menten type functional response. With two
species competing for a single resource we find that coexistence is a knife-edge

feature confirming Tschirhart’s (2002) result in a different but related model.
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1 Introduction

The theory of dynamic interactions of species has a long tradition in population biology. The
study of dynamic predator-prey relations dates back to the seminal works of Lotka (1925)
and Volterra (1926). Various generalizations and refinements have since been suggested,
e.g. by May (1981), Kuang and Beretta (1998), Cantrell and Cosner (2001), Hsu et al.
(2001). The dynamics of resource competition among species has also been a major research
focus over the last decades (Tilman 1980, 1982, 1985 and Pacala and Tilman 1994). The
basic building blocks of all these ecological population models are difference or differential
equations of population growth and decline. Each species is represented by a single equation

containing as variables its own population and, in general, also populations of other species.

There is an ongoing effort to choose the functional forms of those differential equations
in line with theoretical and empirical insights from ecological research. In that sense the
population models have a firm conceptual foundation. And yet, by taking populations
or densities (and their change in time) as their basic endogenous variables these models
are macro approaches which, by construction, cannot explain the development of species
communities over time as a result of various kinds of interactions of individual organisms
inhabiting the ecosystem. These interactions take the form of transfers of resources and
(prey) biomasses. We will take on the theoretical challenge to link the population dynamics
that can be observed at the macro level of an ecosystem with those continuous activities of

organisms at the micro level.

The interactions of individual organisms with other organisms that are characteristic
of ecosystems at the micro level resemble the interactions of consumers and producers in an
economic system in several important ways: Using the notion of resources in a very broad

sense we observe that in both systems
(i) production, consumption and transfers of resources take place;

(ii) resource scarcity is a central feature; it is therefore important to understand how the

system’s agents cope with that scarcity;

(iii) the allocation of resources is determined by the system’s agents in a decentralized and

uncoordinated way.

Economists have a good understanding of the market system as the principal decen-
tralized mechanism of allocating scarce resources in an economy. They use to explain the
working of that mechanism by recurring to the micro level of the economy, more specifi-
cally, to the economic agents’ optimizing behavior under appropriate constraints. In that

sense the economic allocation theory can be said to be microfounded. As for the resource



allocation in ecosystems, we are not aware of ecological approaches to explain the allocation
of resources in ecosystems which are microfounded in a similar way as economic systems
are. In the present paper we set up a microfounded theory of resource allocation in an
ecosystem that makes use of economic methodology and aims at explaining the dynamics

of species populations.!

To our knowledge, Hannon (1973, 1976) was the first to apply economic concepts
such as prices and optimizing behavior of individual organisms to theoretical ecosystem
analysis. His basic ideas have eventually been taken up by environmental economists,
notably by Crocker and Tschirhart (1992), Tschirhart (2000, 2002, 2003, 2004), Pethig and
Tschirhart (2001), Finnoff and Tschirhart (2003a, 2003b) and Eichner and Pethig (2003,
2004). The present paper shares the conceptual basis of all these contributions, but it
will offer the most uncompromizing approach of transplanting the perfectly competitive
allocation mechanism from economic theory into the realm of ecosystem analysis. In our
ecosystem model organisms of each species will be modeled isomorphic to consumers in

economic textbooks.

The starting point of our analysis is the short-run period in which populations are
constant. Representative individual organisms of all species are assumed to behave as if
they maximize their net offspring subject to a budget constraint. Net offspring is increasing
in prey biomass intake, declining in the loss of own biomass to predators, and it satisfies
Allee’s law. The organism’s 'budget constraint’ reflects its perception of how scarce its own
biomass and the biomass of its prey are. This constraint can readily be related to ecological
concepts such as predation power of an organism vis-a-vis its prey and predation risk. The
allocation mechanism that coordinates the supply of each species’ biomass and all predators’
demand for that biomass is analogous to the general perfectly competitive mechanism,
borrowed again from economics methodology. In the context of the ecosystem model,
the only decisive role of this allocation mechanism is to make consistent all organisms’
perceptions of biomass scarcity. The general ecosystem equilibrium attained in the short-
run period determines all biomass transfers and thus the net offspring of all species. The
latter constitutes the (positive or negative) population growth in time. In that way, a
system of population growth functions is generated rather than assumed. We are able to
explicitly determine these functions for a simple food web in continuous time when suitable

parametric functional forms are chosen in the corresponding micro-level ecosystem model.

!There is a long tradition in ecology and related sciences to provide so-called mechanistic approaches
to community ecology, i.e. to explain population dynamics by modelling behavior at the individual level.
An early review is provided by Schoener (1986), and more recent developments are summarized by Persson
and de Roos (2003). The defining difference between this literature and the approach of the present paper

is that we focus on a micro-level ecosystem appraoch based on economic methodology.



In the paper such analytical solutions are derived and characterized.

We are aware that using terms like income, prices and markets may be considered
grossly misplaced in ecological analysis if not provocative. In fact, non-human species
definitively don’t use money. It is interesting to note, however, that the neoclassical eco-
nomic market system of perfect competition as it is set up e.g. in Debreu’s (1959) "Theory
of Value" does not describe a monetized economy with real (fiat or commodity) money and
real institutionalized markets. That theory can readily be interpreted (i) to deal with as-
signing 'values’ or shadow prices to scarce resources, (ii) to consider rational agents coping
with these scarcities under some appropriate constraints and (iii) to envisage an equilib-
rium state of 'market clearing’ that essentially expresses the idea of an allocation process

reaching a state in which all agents’ perceptions of scarcities are consistent.

We believe that with appropriate modifications economic neoclassical allocation the-
ory can be fruitfully applied to theoretical ecosystem analysis. The main purpose of the
present paper is to substantiate that claim. The approach suggested here is flexible, rich in
(testable) implications, and is well suited for its ultimate purpose to form a central building

block of an integrated theory of the ecosystem and the economy.

The paper is organized as follows: Section 2 presents the short-run ecosystem model.
First we introduce the representative organism’s net offspring function, then its budget
constraint and after solving the organism’s optimization problem we explain the allocation
mechanism which equilibrates all biomass demands and supplies. In addition, we perform a
comparative static analysis to answer the question how the organism’s biomass demand and
supply is affected by changes in its predation power and in prices. At the end of section 2
we establish the link between the organism’s net offspring generated in the short-run period

and the growth of species population.

In section 3 we focus on a food web consisting of two prey species and one predator
species and parametrize the model by Cobb-Douglas functions. After presenting three
numerical examples in section 3.1 we turn to special cases. In section 3.2 we investigate
the growth function of a single species, in section 3.3 we rigorously analyze the dynamics
of a two-species predator-prey model. Finally we turn to resource competition when two

species compete for a resource in section 3.4.

2 The general model

Following the methodology of models explaining economic growth in time, the focus is first

on an ecosystem equilibrium of flow variables in a short-run period, where all stocks (here:



populations) are kept constant. In our approach the short-run period is a point in time, in
fact, since we take time to be continuous.? After the equilibrium allocation of the short-run
period is determined, the implied changes (or updates) of populations are accounted for.
They give rise to a system of differential equations that describes the motion of populations
in time. The time path of ecosystem variables (including populations) is thus constituted by
a sequence of (moving) short-run ecosystem equilibria. Owing to this structure, the short-
run, or rather instantaneous, ecosystem model clearly is at the core of the present approach.
It is therefore important to describe the building blocks of the short-run ecosystem model
in great detail. All variables introduced below relate to a specific point in time, ¢t > 0.

However, all time indexes are suppressed to avoid clutter.

The ecosystem to be modeled consists of a habitat conceived of as an area of land
and/or water, that is endowed with non-biomass resources and that is inhabitated by N
species in a food web. The habitat has no spatial structure, i.e. the model is confined to
a single patch.®> No species interacts with any organisms or resources outside the habitat.
Resources are substances or factors other than species which can promote the growth of
some species when consumed by its organisms.? There is a great variety of such resources
in real world ecosystems, some of them being renewable and some non-renewable. Since
our present main focus is on the interaction of species we simplify the resource part of the
model as follows: The ecosystem is assumed to be endowed with a single renewable resource

whose supply r > 0 is time invariant.

In the analysis of species, basic units are individual organisms. To simplify, all or-
ganisms of the same species are assumed to be identical, and the representative member of
species 1 is called organism 7, for short. In the short-run period under consideration the pop-
ulation n; of each species 7 is assumed to be constant. Organism ¢ generates net offspring b;
that is modeled by a strictly concave function B’ : D' — R such that D" := RY x [0, z;] x R,

and

_ i s
bZ—B <Xi,2i,ni> ’L—]_,...,N. (].)
+0 — 40
In (1), x;" := (Tio, Tit, - -, Tii 15 Tiir1y- - Tin) € ]Rf_l, is a vector of organism 7’s biomass

intake and z; is organism ¢’s loss of own biomass to its predators. The latter is bounded
from above by z;, a constant positive real number. We denote by x;, organism #’s intake of

the resource which is also referred to as biomass of species 0, for notational convenience.

2For discrete time frameworks see e.g. Tschirhart (2000, 2002, 2004).
3At the end of the present section some discussion is offered on the changes that would have to be made

for multiple patches.
‘Essentially, this definition is Tilman’s (1982) notion of resources except that we exclude biomass re-

sources because these biological resources are explicitly modeled as species in the present approach.



For j # 0 and j # 4, x;; is organism ¢’s intake of biomass of (prey) species j. Obvi-
ously,” Bii < 0 means that organism ¢’s net offspring generation is hampered by losses of
own biomass z;. On the other hand the derivatives B;ij > 0 for j # 7 indicate that organism
1’s net offspring is fostered by the intake of biomass of prey species. Since organism 7 cannot
survive without resource or biomass intake we set® B’ (ON, 0, nz) < 0. As a consequence,
B (+) = 0 requires some food intake. The special case B’ (-) = 0 characterizes a situation
where the birth rate of species 7 equals its death rate such that its population is constant.
Some partial derivatives of function B’ may be zero, of course. If organism 7 belongs to a
plant species, one would expect Bf > 0 and B. < 0 but B;ij =0forall j #£0,j#i In

case of an animal species we certainly have B;ij > 0 for some j # ¢ but perhaps Bfm = 0.

The net offspring function (1) also has the property

B! (%, zi, 1) { >0 G 2i,mi) € DF
' =0 otherwise,

where D! := {(xi,zi,ni) | x; # 0V, 2, < z; and n; € [O,ﬁi]} and where 7n; is a constant
positive real number referred to as the critical population level of species 7. The idea
behind including n; as an argument of the function B’ is that the representative organism’s
generation of net offspring is the more hampered, the further n; drops below the critical
level 71;. Due to reduced ability and /or opportunity to reproduce species i is an endangered
species, if n; < n;. This hypothesis is in line with empirical evidence from ecological studies

known as Allee’s Law (Berryman 2003).”

The next step is to specify the allocation mechanism that determines all short-run
biomass transactions in the ecosystem. Central features of ecosystems and economies alike
are scarcity and competition for resources (broadly conceived). In economic models of
resource allocation the perfectly competitive mechanism is a device to deal with scarcities
in an efficient way. It is described in terms of prices, price-taking agents and markets
and is, in our view, appropriate to solve the (short-run) allocation problem in multi-species
ecosystems. This adaptation does not imply at all to suggest the introduction of real money
and real markets into the ecosystem. After all, the neoclassical allocation theory (with
Debreu’s (1959) "Theory of Value" as its outstanding if not defining contribution) does not
describe a monetized economy with real markets. That theory can readily be interpreted
(i) to deal with assigning ’'values’ or shadow prices to scarce resources, (ii) to consider

rational agents coping with these scarcities under some appropriate constraints and (iii) to

5Subscripts assigned to upper-case letters representing functions denote partial derivatives.
60" is the N-dimensional vector consisting of N zeros.

7According to Allee’s Law, reproduction is reduced at low population densities. This is why small
populations have lower chances to survive, and therefore Allee’s Law is of special interest to ecologists

studying endangered species.



envisage a short-run equilibrium state of ‘'market clearing’ that essentially expresses the idea
of the allocation process reaching a state in which all agents’ perceptions of scarcities are
consistent. Such a mechanism will now be specified for the problem of resource allocation

in the ecosystem.

In our ecosystem model the biomasses of all species are viewed as commodities traded
in a system of competitive markets, where ’intake of prey biomass’ translates into ’"demand
for prey biomass’ and ’loss of own biomass’ is interpreted as ’supply of own biomass’. To
further specify this ’economic approach’ to the ecosystem, denote by p; the price of biomass
of species i and by e; organism #’s (exogenous) lumpsum income. Prices and incomes are
denominated in virtual units of account. Organism ’s transactions are constrained by the

inequality
e+ pizi > Pl X i=1,...,N, (2)

where p'; := (po.p1,- s Pic1, Pit1,---pn) € RY. Obviously, (2) closely resembles the
household’s budget constraint that economists use to employ for describing the consumer’s
decision problem. According to (2) organism 7 has two kinds of incomes for purchasing prey
biomass p';-x;: the lumpsum income e; > 0 and the receipts from selling own biomass p;z;.
The lumpsum income is a species-specific parameter reflecting organism #’s status or power
as a predator, i.e. its 'entitlement’ to feed on its prey without being forced to sacrifice own
biomass to its predators. We will therefore refer to e; as the predation power of organism
1. e; is organism ¢’s only income if 7 has no enemies because 7 is - or has become - a top

predator.

If a predator species exists for species 4, organism ¢ can expand its expenditure on
prey biomass beyond e; if and only if it is willing to earn some biomass income, p;z; > 0,
to pay for the extra food. The observation that purchasing extra prey biomass requires a
sacrifice of own biomass® z; readily reflects what ecologists refer to as organism i’s predation
risk, the risk of being preyed upon while preying (Lima and Dill 1990): During the process
of foraging (purchasing x;’) organism i exposes itself to its predators, and the more prey
biomass organism ¢ demands the greater is the risk of being devoured by preditors. Thus
equation (2) combines the forces of predation power and predation risk: To secure some
given amount of prey biomass, at given prices, organism 7 needs to sacrifice the more own

biomass the lower is its predation power.

Having specified organism ¢’s budget constraint we now turn to its decision problem.

It is assumed that all individual organisms are price takers and behave as if they solve the

8The obvious analogy to the economic consumer theory is the correspondence between biomass income
and the consumer’s labor income: The supply of labor reduces utility, the supply of own biomass reduces

net offspring.



maximization problem:

max B’ (x;,2,n) st (2). (3)

(xi,2:)

The first-order conditions of the solution to (3) can be rearranged to read

—2 = = i=1,...,N; j,k=0,1,...,N; i # j,k, (4a)
B, P
—ﬁ - % i=1,...,N:j=01,... N:i#j. (4b)

As known from textbook consumer theory, (4a) requires the organism i to expand its intake
of prey biomass j to the point at which the marginal rate of substitution B;ij /B, of prey
biomass j for prey biomass k equals the prevailing (price) ratio p,/py of exchanging each
unit of biomass j for biomass k. Similarly, (4b) requires organism ¢ to expand its intake
of prey biomass j to the point at which the marginal rate of substituting prey biomass j
for own biomass, —chl,j / Bii, equals the rate of exchanging each unit of prey biomass j for
own biomass, p;/p;. Combined with (2), (4a) and (4b) implicitly determine the Marshallian

demand and supply functions

x; = X'(p,ei,n):= (XZU(p,ei,n),...,XiN(p,ei,n)) i=1,...,N, (ba)
2z = 7'(p,e;,n) i=1,...,N, (5b)

where p := (po, . ..,pny) € RYT! is the vector of prices and n := (ny,...,ny) € RY is the

vector of populations.

In the following we are interested in how an organism’s feeding choice varies with
changes in its predation power and in prices. Let us begin with changes in the parameter
e;. For any given (p,e;,n), the derivative Xﬁf(p,ei,n) represents the increment in its
demand for biomass of species ¢ induced by a small change of its predation power. Whether
this derivative is positive or negative is an empirical matter whose investigation is beyond
the scope of the present paper. Another important piece of information is how organism
¢ adjusts its demand for biomass ¢ to a small change in the price of biomass k, px. The
derivative X;i (p, €;, n) represents that price effect of py on organism i’s demand for biomass
{. Like in the economic consumer theory one may want to refer to biomass ¢ and biomass

k as substitutes [complements| for organism i, if Xt > 0 [Xif < 0].

In fact, due to the isomorphism between (5) and the demand and supply function
of consumers we can tap on the well elaborated comparative-static analysis of consumer
behavior to further scrutinize the price effects X;f; with the help of the expenditure function
and deriving the Hicksian demand and supply functions (see e.g. Mas-Colell et al. 1995,

p. 67). To that end recall that we have envisaged the organism as maximizing its net

7



offspring for given prices and predation power. It is easy to see that net offspring will be
maximized for given expenditure only if the level of net offspring realized is being achieved
in the cheapest possible way: expenditure must be minimized for any given level of net

offspring. Formally, the expenditure minimization problem is

min ~ p',-x; —piz st by > by (6)

(xi,2:)

The solution to (6) gives the so called Hicksian demand and supply functions

x; = H'(p,by,n):= (Hio(p,bi,n),...,HiN(p,bi,n)) i=1,...,N, (7a)
2z = K'(p,b;,n) i=1,...,N. (7h)

Combining (5) and (7) and considering their relation yields the Slutzky equation?
it _ it it ik
ka(paeian) — Hpk(pabian) _Xei(paeian) - X (paeian)' (8)

That equation decomposes the change in demand induced by a price change into two sep-
arate effects: the substitution effect H!f and the income effect X’ - X**. The substitution
effect indicates how the organism ¢ substitutes one prey for another when the price py
changes but purchasing power e;/p; remains constant. The idea is that the organism is
being compensated for a price rise by increasing its predation power such that it is able to
purchase the initial feeding bundle. The substitution effect is negative, since the change
in demand due to this effect is always opposite to the change in price. If the price of a
good increases, the substitution effect causes a reduction in the demand for that good. The
second partial effect of the price change is the income effect. Here the purchasing power
e;/pr. has changed upon the price change and the term Xée - X% measures the impact of
this change on demand. The basic insight is that implicit in each price change is a change
in "real predation power’ (exogenous income). Depending on the sign of X (see above)
the income and substitution effects in (8) can exhibit the same sign - in which case X;;i is
unambiguously negative - or can be opposite in sign - in which case X;i becomes positive

if and only if, in absolute terms, the income effect overcompensates the substitution effect.

At the present stage of conceptual analysis it is difficult to predict how useful this
analytical Slutzky decomposition will turn out to be in future (applied) ecosystem studies.
The main purpose of having discussed the properties of the demand functions (5a) here in
some depth is to point out that our short-run ecosystem theory can fall back on a wealth

of theoretical results well established in the economic consumer theory.

Our basic hypothesis elaborated above is that organisms maximize net offspring under

constraints. While individual optimizing behavior appears to be a fairly accepted hypothesis

9For a proof of the Slutzky equation see e.g. Mas-Colell et al. (1995, p. 71).



in the ecological literature, taking net offspring (i.e. the function B’ from (1)) as the
objective function is less common. Alternatives are net energy (Tschirhart 2000) or utility
(Anderson 2002). All these objective functions may be interpreted as indicators of fitness
which is a much broader concept that is hard to operationalize. Given the rather high
level of abstraction of the present model it is possible to reinterpret net offspring B®(-)
as net energy, utility or even fitness without changing the implications of the ecosystem
model. The only additional hypothesis necessary to proceed with the model as it stands is

to assume that net energy, utility or fitness is positively correlated to net offspring.'?

As the above outline of our approach demonstrates, its central focus is to explain
population dynamics as emerging form micro-level interactions of individual organisms.
Another, quite different route to establish a link between population dynamics and processes
acting at the individual is taken by the so called individual-based models surveyed in Grimm
(1999)."" Although the objective of both bottom-up approaches is very similar they differ
vastly in methodology and analytical structure. We model an allocation mechanism for the
ecosystem with optimizing behavior of individual organisms, with scarcity indicators and
with a concept of short-run ("market clearing") equilibrium for the ecosystem. All these
features are absent in most individual-based models although it is important to emphasize
that individual-based models do not follow uniform standards in micro-level modeling.
For example, Anderson (2002) models individual organisms seeking to maximize expected
utility where the probability of enhancing utility by some action may vary. In spirit, such
an approach is quite close to the model of the present paper. Another distinguishing
feature is the complexity in modeling the micro-level processes:'? While we assume that
all individuals of a species are alike (but differ across species) individual-based models
deal with species made up of heterogeneous individuals; heterogeneous by age class, size
or weight. Moreover, in the present paper, the ecosystem consists of a single patch.'® In
contrast, individual-based models are spacially explicit considering, e.g. a collection of
two-dimensional calls in space (Railsback et al. 2002). Another important difference in
complexity is that our approach does not model uncertainty explicitly, while individual-

based models often incorporate stochastic processes.

10With such a reinterpretation, equation (12) below would then imply the assumption that net energy,
utility or fitness is proportional to net offspring. But (12) could be relaxed to reflect positive correlation

only. See, for example, the procedure chosen by Tschirhart (2000).
11Gee also the special issue on ’advancing the individual-based modeling approach’ of the journal Natural

Resource Modeling, Volume 15, Number 1, Spring 2002.
120n the one hand, complexity is desirable since it promises realistic modeling. Yet as Adami (2002,

p- 134) notes "... to some extent, the modeling of complex systems defeats its purpose if the complexity

cannot be reduced."
13The changes that would have to be made for multiple patches in the present approach are outlined at

the end of section 2.



We will now complete the description of the ecosystem allocation mechanism. The
demand and supply functions (5) are defined for alternative price vectors p taken as given
by all organisms. It is now necessary to determine that particular price vector which renders
compatible all (decentralized) plans of demanding and supplying biomass. In terms of the
formal model we introduce the following definition of short-run ecosystem equilibrium:
Let the vector of predation power, e := (eq,...,ey) € ]Rf and the ecosystem’s resource
endowment r € R, be given. For any given vector of populations n the ecosystem exhibits

a short-run equilibrium at the price vector p*, if p* satisfies

n; 7" (p*,e;,n) = anXﬁ (p*,ej,n) fori=1,...,N. (9b)
J#i

Conceptually, this notion of short-run ecosystem equilibrium is the same as the Debreu-
type general perfectly competitive equilibrium from neoclassical economic theory. (9a)
and (9b) are market clearing conditions in economics. Yet in the present context, the
‘market clearing’ price vector p* is interpreted as a vector of scarcity indicators which,
if perceived correctly by all organisms, make all biomass transactions compatible. This
compatibility, in turn, is indispensible for characterizing a vector of biomass transactions
((x1,21),.--,(xn,2n)) as being feasible. In that perspective, assuming that a short-run
ecosystem equilibrium is reached (as we will do) amounts to suggesting that all organisms
have rational expectations concerning the ’prevailing’ scarcity of their own and their prey

species’ biomass.

Whether a price vector p* exists that solves the formidable coordination problem (9)
is not a trivial issue. Although it is not the purpose of the present paper to tackle the
mathematical-technical intricacies of existence rigorously, a few remarks on that issue are
in order indicating some differences of the existence issue between economic models and the
present ecosystem model. Observe first that in (9b) the strict equality sign is used rather
than the > sign as is common in economic models with ’free disposal’. In the ecosystem the
resource may be abundant but biomass transactions are such that the intake of biomass by
the predator is always equal to the prey’s loss of own biomass. Hence abundance cannot
mean that in short-run equilibrium demand falls short of supply. Consequently we have
p; > 0 for all + > 0 with positive short-run equilibrium demand. Nonetheless, under certain
conditions p; = 0 for ¢ > 0 is feasible. To see that suppose species ¢ is a top predator,
i.e. a species that is not preyed upon by any other species (hence xj; = 0 for all j). If

p; > 0 would prevail, z; > 0 might be optimal for organism 7 resulting in the excess supply

14The model doesn’t offer an explanation as to how such a short-run equilibrium is brought about at
each point in time. But it shares this feature with all economic general equilibrium models that represent

an important and widely undisputed part of the mainstream body of economic theory.
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Zi — Z#i xj; = z; > 0. Such an excess supply is effectively avoided only if p; = 0 since in
that case organism ¢ cannot earn an income by supplying own biomass and hence will not

offer own biomass.!®

Another interesting point is whether the nonsatiation assumption in (1), i.e. B;,ij >0
for all z;; > 0, can be considered realistic.' If it is dropped as in Eichner and Pethig (2003)
serious existence problems arise (and such problems would also arise in economic models)
even in an ecosystem model with a simple food chain. In Eichner and Pethig (2004) as well
as in the subsequent parametric models the nonsatiation assumption is applied such that

all short-run equilibrium prices are positive except those for top predators.

The short-run equilibrium definition also allows for an interesting interpretation of
the parameters e; which we have referred to as organism ¢’s predation power. Consider (2)

as an equality and rearrange it as follows

bizi — g PjTi; = PoTio — €4

J#i
— Dinizi — ijnz‘iﬂij = PoNiTio — €N
J#i
— sznzzz — Z ijnixij = Zponz'fﬁz'o — Z €1
i i g i i
— sz‘ (nlzz - Z nhxhz) = Do Znixio - Z €iMn;. (10)
i heti i i

In view of (9b) the right side of (10) is zero in short-run equilibrium. Moreover, (9a) yields

> ni%ip = r, and therefore

por = Z ein; (11)
i

follows from (10). According to (11) the resource rent is equal to total exogenous income.
This rent represents an indicator of the value of the entire ecosystem since all species depend
on the resource in a direct or indirect way. A somewhat unconventional way of looking at
that result is to suggest that the resource is owned by all organisms with organism ¢ being
entitled to the share 6; := ¢;/ Zj e;jn; of the resource rent. From that definition of 6;
and (11) we readily infer e; = 0; ), e;n; = O;por. This equation suggests to interpret the
predation power e; as a (natural) capital income accruing to organism ¢ owing to its property
rights in the resource. The greater its ownership share is the more powerful organism ¢ is
relative to organisms of other species. Note also, that the share 6; is homogeneous of degree

zero in the parameters ey, ..., ey and is strictly decreasing in all populations.

15Owing to this observation one can also assume (as we do in section 3) that a market for the biomass

of top predator species doesn’t exist.
16With respect to his net energy function, Tschirhart (2000, 2002, 2004) assumes satiation.
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Solving (9) with respect to prices and inserting the resulting short-run equilibrium
prices into the demand and supply functions (5) we obtain the short-run equilibrium de-
mands and supplies, (x;, z;) all i, as functions of species populations. In formal terms we
write 2; = X%(n) and z = Z%(n) for i = 1,..., N. At the end of each short-run period,
each organism has generated the positive or negative net offspring B’ Xiil(n), Zi(n), n;|.
If positive, the net offspring generated by the representative organism can be identified as
offspring. If negative, the net offspring indicates the organism’s probability to survive the

period. We normalize each organism as consisting of one unit of (own) biomass and write

dnz- o
n dt n

17—

'(n), Zi(n), n; i=1,...,N. (12)

The differential equations (12) form the decisive link between the short-run equilibrium
allocations and the populations updates. They describe the interdependent development of
all populations over time as determined by micro-level intra-ecosystem biomass transactions
at each point in time. It is crucial to emphasize that the population dynamics in (12) are
not assumed ad hoc but rather derived from the underlying ecosystem model of the short-
run period. That ecosystem model provides a theoretical microfoundation for (12) with
the consequence that the properties of (12) depend on the assumptions regarding offspring

generation, behavior and allocation rules in the short-run ecosystem model.

The system of differential equations (12) is too general to provide specific information
on the growth or decline of species populations in time. The rest of the paper (section 3)
will aim at making progress by reducing the number of species to three and introducing
simple parametric forms for the net offspring functions. But before we proceed along these
lines some further discussion is in order on the short-run ecosystem model developed above

regarding the assumption that this model is confined to a single patch.

In the real world, ecosystems are patchy, of course, and that patchiness has an im-
portant impact on predator-prey relations which is similar, in principle, to the impact of
heterogeneous regions or countries on interregional or international economic activities un-
der a free-trade regime. Hence, conceptually, our single-patch ecosystem model can be
extended to a multiple-patch habitat in a similar way as the economic model of a closed
(and spaceless) economy is extended to an economic model with many regions or countries
which is extensively done in the economic subdisciplines of regional science and interna-
tional economics. Following this line of analogy in modeling a multi-patch framework one
obviously needs to introduce a price vector for every patch and along with that an appropri-
ate modification of the transactions constraint (2). Mobile organisms develop demand for
some prey biomass across regions and optimize by comparing regional prices of the prey as
well as regional predation risks. Whether equilibrium prices will equalize or differ between

regions depends on the mobility or immobility of species and hence on whether markets
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are regional or global. For example, if a mobile animal demands some prey across regions,
arbitrage purchases will induce a tendency toward interregional equalization of both the
price of that prey and predation risk. On the other hand, plants are territorial (i.e. not
mobile) and hence a plant located in patch 1 cannot tap into a resource (e.g. sunlight)
in patch 2. Hence regional resource prices will likely differ at least until a steady state
is reached (in which case we conjecture the interregional equalization of all equilibrium
prices). Some further qualifications apply in case of imperfect or costly mobility. As these
sketchy remarks show, the methodology of our short-run ecosystem model can be readily
extended to a multiple-patch framework and promises, moreover, interesting if not pro-
voking implications. To elaborate and explore such an approach in a systematic way is,

however, beyond the scope of the present paper.

3 A parametric specification of a three-species ecosys-

tem model

To obtain additional information on the characteristics of population growth we proceed
by introducing a parametric net-offspring function of the Cobb-Douglas type.'” To further
simplify we restrict our attention to a food web with three species. Species 1 and 2 feed
on the resource, r, and species 3 feeds on both species 1 and 2. The corresponding net

offspring functions are

B (210, 21,m1) = A'(ny) -2 - (z — 21)" — 7, (13a)
B? (239, 20,m9) = A%(ng) - 22 - (% — 22)” — 0, (13b)
B® (231, 230, 23,n3) = A% (ng)- 23?283 (23 — 23)7 — 73, (13c¢)
where
A" (n;) := min [1, %} : (14)

and where «;, 3;, ¢3 €]0,1], n; > 0, and ~; > 0.

17This parametric functional form had been introduced into the economic literature by Cobb and Douglas
(1928) who employed it as an aggregate production function in empirical studies. Since then it plays a
prominent role in microeconomic research and textbooks representing production functions or even utility
functions. If the model presented here will be used for large-scale numerical simulations one may want
to replace the Cobb-Douglas functions by its generalized form, the so called CES functions (with CES for
constant elasticity of substitution), which allow for more parametric flexibility. But analytical convenience
is not the only reason for choosing here the simpler Cobb-Douglas form. We are going to demonstrate
below that the population dynamics induced by our ecosystem model with Cobb-Douglas are very close to

those which are assumed in conventional macro models of population ecology.
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To describe the parameters of the net offspring functions, we restrict our focus on
(13a). nq has been specified above as the critical population level of species 1. If ny drops
below 71, reproduction is hampered (Allee’s Effect). ~; is the death rate. Without any

food intake x19 = 0 or with maximum possible loss of own biomass (2; = Z;) net offspring

would be negative: B! (-) = —v;. The role of a; is further clarified as follows:
OB! B'(- 0? B! B! (.
— al - M > O’ 5 — al - (al J— 1) - M < O’
Oz T10 A1y L10
oB!

aal [Bl () + ")/1] . 111.2510 > 0.

An increase in prey biomass intake increases net offspring but less than proportionate.
Moreover, an increase in the parameter a; also increases net offspring. Along the same

lines we obtain

OB! <0 9’ B! <0 OB! >0
821 ’ 82% ’ 851 ’

An increase in the loss of own biomass to predators reduces reproduction more than pro-

portionate. An increase in the parameter f; increases net offspring.

Solving (3) for the functions (13) yields the biomass demands and supplies

. e + a1p12; I a1Zip1 — Bie (15a)
10 — 1= =~
(a1 + B1)po (a1 + Bi)p
Qoey + QopaZs Qo Zapy — [faeo
gy = 22T P a%Dr — Paes 15h
20 (a2 + B2)po 2 (a2 + B2)p2 (15b)
Q3€3 ¢3€3
py = 934 gy = — 28 15¢
o (az + ¢3)p1 72 (a3 + ¢3)p2 (15¢)

The properties of these functions conform to intuition: The demand curves slope down and
the supply curves slope up.'® Moreover, an increase in an organism’s predation power raises

its demand for prey biomass but reduces its supply of own biomass.

Inserting (15) in (5) enables us to completely characterize the short-run ecosystem

18These properties of demand and supply functions are due, of course, to the Cobb-Douglas specification
(13) of the net offspring functions. Other parametric functional forms, e.g. CES-functions, would allow for
downward sloping supply functions that would correspond to the 'backward bending labor supply curves’

discussed in the economic consumer theory.
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equilibrium:

po = P° <€1,€2,€3,n1,n2,n3, ) mer - naes ¥ n3e3’ (16a)
+ 4

pP1 = Pl <ela €2, 63,’]11,712,713, ) nllﬁl as + ¢3)61 i n3a3(a1 * 161) ’ (]'Gb)
¥ o niai(as + ¢3)21

b2 = P2 <ela €2, e3an17n27n37 ) n2162 @ T ¢3)e2 i n3¢3(a2 kA 162) ) (16C)
0 7 noaa (a3 + ¢3) 7o

gy = X1 <61’62’63’n1’n2’n3’r _ 1 ni(az+ds)er +nzazes ’ (164)

N A Z ni (a3 + ¢3)(nie; + noes + naes)

T ng (a3 + ¢3)ez + n3pzes

T20 = X20 <6_1,2_2,63,n1,7%’2,n3,?") = 3 (166)

ny (a3 + ¢3)(nier + noes + nzes)
N1 3E32Z7]

o= X <el’ 602’ 63,’n1,’n2,n3, 0 nlﬁl (a3 + ¢3)e1 + nzaz(ar + Pr)es (161)
= X <601’ T TR 30 71252 az + ¢Z§€O;2f-3:lzf;3(0&2 + B2)es (16¢)
a =7 <el’ P PTRTE 0) - n1 B (as + ¢Z§Zli37izzl3(a1 + B1)es (16h)
2 = 7 <601’ 2 eI g) - nafa(as + ¢Z§j22ﬁ3zzz(a2 + f2)es’ (169

The equations (16) demonstrate that with the parametric functions (13) and (14) a short-
run equilibrium of the parametric three-species ecosystem model exists and is unique with
all short-run equilibrium prices being strictly positive. Observe that the supplies of own
biomass, z; and zs, are positive, too, which means that in short-run equilibrium the organ-
isms 1 and 2 prefer to expand their intake of prey biomass by sacrificing some own biomass
rather than being satisfied with the amount of food they are able to secure by exclusively
relying on their predation power. The short-run equilibrium prices (16a)-(16¢) are scarcity
indicators for the resource and for the species 1 and 2, respectively. We have marked in (16)
by plus and minus signs how short-run equilibrium prices and transactions react to para-
metric changes in predation power and population sizes to indicate how rich our (short-run)
ecosystem model is with respect to testable hypotheses. For example, it conforms to one’s
intuition that an organism’s short-run equilibrium intake of prey biomass rises [sacrifice
of own biomass shrinks| with own predation power and declines [increases| with growing
predation power of its predator. Further discussions of these comparative-static effects are
left to the reader.

Combining (16), (13) and (12) yields the differential equations of population growth

hl = MN1- Gl (7", ni,No, n3) ) (17&)
7;L2 = MNg- G2 (7", ny, Nag, ng) s (17b)
7;L3 = nN3g- G3 (nl, No, n3) s (17C)
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where

1 _ gl r m(az+ P3)er + nzazes o
¢ = A [ﬂl (a3 + ¢3)(nieq + noeg + ?1363)]
. [g - mpi(ag + P3)er + n3Piages ]Bl B (18)
" niBi(as + ¢a)er + naaz(ar + Bi)es m
20N _ 42 [r noas+d¢s)ea + nagses |
¢ () =4 (n2) [ng (Ck3 + ¢3)(n1€1 + noeg + n3€3):|
. maBa(as + d3)ex + nafagses rQ _
[22 nafa (a3 + ¢3)es + nzps(as + B2)es 7 (18b)
30y — 43 _ N1y 3e3zy o
G0 A (ms) [n151(043 + ¢3)er + nzaz(a; + ﬁ1)63]
. naQap3eszy s By
[n252(043 + ¢3)ea + nags(as + 52)63] B (18c)

The system (17) of differential equations fully determines the dynamics of the three-species
model. It is worth noting that while the Allee’s Law terms A’(n;) from (9a) have not
affected the allocation (16) of the short-run ecosystem equilibrium at all they do play an

important role in the growth functions (17).

A full investigation of the system (17) is clearly beyond the scope of the present
paper. To shed more light on the development of populations we proceed by presenting
three numerical examples (section 3.1). Next we consider the simplest case where species 2
and 3 are absent (section 3.2). After that we turn our attention to the case where species
2 is absent (section 3.3) which turns our food web model into a predator-prey model.
Finally we consider the case where species 3 is absent which amounts to modelling resource

competition.

3.1 Numerical simulations

In this section we present three numerical examples which are calculated with the help
of the computer program Mathematica.!® In these examples the initial populations are
assumed to be n;(t) = 20 for 7 = 1,2,3 and the critical population levels are set equal to
ni=1fort=1,2,3.

Example 1: In example 1 the parameters are chosen as follows: a; = 0.4, as = 0.5,
Q3 = 05, 51 = 52 = 53 = 05, ¢3 = 01, Y1 = 2, Yo = 15, Y3 = 15, €1 = 4, €y — 1, €3 — 8,
r =100, z, =4, Z, = 9 and Z3 = 4.

19The program for simulations is available from the authors upon request.
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Figure 1: Coexistence of three species

Figure 1 illustrates the population growth in example 1. Initially the populations
of species 1 and 2 grow rapidly while the population of species 3 declines from ¢ = 0 to
t = 0.5. Obviously, in that first time period the populations of species 1 and 2 are too low
to provide enough food for species 3 but with increasing prey populations food becomes
more abundant such that the predator population recovers and increases as of ¢ > 0.5. It
is also interesting to observe that the growth of the predator population levels (that levels
off eventually) increases predation pressure which, in turn, causes a slight decline in both

prey populations after t = 3. All populations converge to their equilibrium?® levels
ny = 53.13, ny = 44.50 and n3 = 36.93.

The populations of species 1 and 2 reach their equilibrium level from above and the popu-

lation of species 3 from below.

Example 2: This example serves to demonstrate the case where the predator species goes
extinct. We use the same parameter values as in example 1 except for the death rate of the

predator species 3 which is now raised from 3 = 1.5 to 3 = 3.

As shown in figure 2 raising the predator death rate results in a decline of the predator
population while both prey populations increase. At t = 10.2 the predator population hits
its critical level n3 = 1 and from that time on Allee’s law applies to species 3. The associated
time paths for £ > 10.2 are depicted in figure 3. The predator population becomes extinct

while the prey populations grow and converge to their equilibrium levels

n; =81.45 and ny = 74.20.

20When we say equilibrium without the prefix short-run it is a steady state (stationary point).
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Figure 2: Predator extinction
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Figure 3: Predator extinction, nz < ng

Example 3: In our last example we construct the case of prey extinction. Here we use the
same parameter values as in example 1 but change species 2’s death rate from v, = 1.5 in
example 1 to 75 = 6. The corresponding population growth paths are illustrated in figures
4-7. In figure 4 the population of species 1 increases, the population of species 2 decreases
rapidly and the population of species 3 decreases slowly. At ¢ = 1.755 the population of
species 2 hits its critical level no = 1. In the next time period 1.755 < ¢t < 6.098 shown
in figure 5 the population of species 3 shrinks rapidly and hits its critical level ng = 1 at
t = 6.098 in the left panel of figure 5 while the population of species 2 is still positive
(as can be seen in right panel of figure 5). Figures 6 and 7 characterize the popoulation
growth for the time periods 6.098 < ¢ < 9.52 and ¢t > 9.52, respectively. They show that
species 2 is the first to perish and then species 3 goes extinct while species 1 approaches its

equilibrium population n; = 100.
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Figure 4: Prey extinction
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Figure 5: Prey extinction, ny < ns
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Figure 6: Prey extinction, ny < ng, n3z < ng

It is a general feature of our model that if one of the prey species becomes extinct

then the predator species cannot survive either. To see that consider the case where species
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Figure 7: Prey extinction, ny = 0, n3 < ng

1 goes extinct (ny = 0). Then owing to (16f) the predator’s demand for biomass of species
1 is 33 = 0 and the predator’s population growth simplifies to n3 = —ngsy; with the
consequence that the predator goes extinct, too. The simple reason for that feature is the
Cobb-Douglas specification of organism 3’s net offspring function. With Cobb-Douglas,
both prey biomass intakes are essential inputs for the survival of species 3. If one would
replace the Cobb-Douglas function by a CES function with an elasticity of substitution
unequal to one it would be possible to generate a scenario in which species 2 perishes while

species 1 and 3 prevail.

3.2 Microfounded dynamics of a single species: the logistic growth

function

If the ecosystem is inhabited by species 1 only, its population growth is obtained by setting

ny = n3 = 0 in equation (18a):

o= F(m):=mn- [% (é)a () _%} for ny € [0,],  (19a)
o= F(m):=mn- [(%)a (3 - %] for ny > ;. (19b)

Consider first the function F' from (19b) and ignore temporarily the constraint n; > n; on

its domain. Closer inspection of (19b) shows that

1_ a1—ﬂ1
Fp = —UZ0OmE (20)
U3
5\ =
1-— 011)2 A .

E, =20 = n = or- (A —a)a” =: iy, 20b
< LD ( " 1 (20b)

2ﬁ1/a1
F(ny) = 0 <— n=0 or 7r- 11/a1 =7 . (20c)

"

The properties (20) of the function F' reveal that F' is a logistic growth function of the

Verhulst-Pearl type (Verhulst (1838)): F'is strictly concave and attains it unique maximum
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1
at ng :=1r- |(1— Ozl)Zlﬁl/% “'. F(ny) = 0 is satisfied at n; = 0 and n; = 7; > 0 where

7y is known as the carrying capacity of species 1. As (20c) reveals, the carrying capacity
is increasing in 7 which is exactly what the extant, more recent literature emphasizes. For
example, Swanson (1994, p. 811) argues that on land, ". .. the amount of habitat available to
a given species . . . is probably the single most important factor determining species viability
in the short and the medium run" and he sets up a model of resource harvesting where the
'natural’ growth rate of a biological resource is assumed to be affected by the allotment of
natural habitat in the same way as in (19b). Note, however, that the dependence of the
carrying capacity on the size of the resource (or size of habitat, respectively) is not assumed

in the model of the present paper but rather is derived from more basic assumptions.

Figure 8: The logistic growth function for species

We now reintroduce the constraint n; > n; on the domain of the function F. In
function F from (19a) 73 > 0 can arbitrarily be chosen, in principle, although setting 7; >
7y would seem to be an implausible specification. Obviously we have F(,) = F(#,) which
implies that the differential equation (17a) is continuous on ny € [0, oo|. Differentiation of

F with respect to n; yields

(2 — al)ro‘lélﬂl

E, = = nimM — 4y <0, (21a)
1
~ 2 _ [e%} *ﬁl
F’nlnl - ( ;17/321 ! > 0. (21b)
1

Hence the function F is strictly convex and attains its unique minimum at

n
’FLl = R} B > 0.
(2 — aq)ronzy!
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From F(nl) =0atn, =0 and Fnl § 0 for n; § 1, follows F(ﬁl) < 0. Moreover, since

F(fy) > 0 there exists 7y € [, 7] such that F(2;) = 0. Invoking (19b) we readily

1/(1-a1)
calculate 11, = (71751/(7"“551)) 1

Summing up, the growth function (19) exhibits
three equilibria: ny = 0, n; > 0 and 7y > 7y, where [0,74[ and |7y, oc[ are the basins of
attraction for n; = 0 and 7y, respectively. Figure 8 illustrates the growth function (19)
where the dashed line represents the graph of the function F' from (19a) on the interval

[0,71] on which F' is not defined.

3.3 Microfounded population dynamics of a predator-prey system

Suppose now the initial situation is characterized by positive n; and n3 and ny = 0. In this

case the equations (18a) and (18c) yield*!

A (_)(ﬁ( By (nves + nges) )’31_%]’ (22a)

n nier + nzes) + anzes

) nje3z; “@o
= ng- [A%(ng) - I I 22h
" " [ (ng) (51(”161 + n3€3) + 71304163) & 73] ( )

’hl = N7

We normalize the constant z5° by setting 53 = 0. This assumption simplifies the analysis
without substantially altering the results (53 > 0 would merely require to modify some

assumptions on parameters). Moreover, we define the new parameters

_artfies _ aqes A
mi= MIRG -

= , Cci= —.
B e B €1
With these qualifications, equations (22a) and (22b) take the form

a1 ,Bl
. +
o [ () (Sl ] e
, cn @
N3 = N3 |:A2(n3) <n.i—7mln> — ’}/3:| . (23b)
1 3

As the right sides of (23a) and (23b) are not defined at (ni,n3) = (0,0), it will
be assumed that n; = ng = 0 if n; = ng = 0 by definition. Calculating the limit for
lim(;,, n,)—(0,0) shows that under this assumption both 7, and n3 are continuous on ]Ri if
0 < a7 < 1, although not differentiable at (0,0) as shown in appendix A. The following

assumptions are supposed to be met in the sequel.

2In addition, we have to set ¢3 = 0 which follows from (15c). Observe that in case of ny = 0, the
demand of organism 3 for biomass of species 1 is directly determined by organism 3’s budget constraint
es = p1r3y which yields z3; = e3/p;. To be consistent with (15¢) we thus have to require as/(as + ¢3) =1

or equivalently ¢35 =0.
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Assumptions: The parameters in the equations (23a) and (23b) satisfy fc > %}/%_ In

addition, the initial values of ny and nz are non-negative. If ny = nz = 0, then n; = nz = 0.

We begin with an analysis of system?? (23) for the special case where A'(n;) = 1,
i = 1,2. That is, we temporarily neglect Allee’s Law as formulated in equation (14) but we

will reintroduce it in section 3.3.2.

3.3.1 Neglecting Allee’s Law

If A%(n;) = 1 in system (23), we refer to (23) as the simplified system (23). This system has
three equilibria. To begin with, set n; = 0 and n3 > 0, implying n; = 0 and nzg = —73ns.
Thus, there is a first (trivial) equilibrium Ey = (0,0) and there can be no other equilibrium
where n; = 0. It is obvious that (0, 0) is stable along the ns-axis. Thus, if there is no prey,

the predator will become extinct.

Setting ng = 0 and n; > 0 implies n3 = 0 and

a1 Zﬂl 1-ay

ny=r "z — 71na.

It is straightforward that there is a second equilibrium F; at*
(n1,m3) = (71,0)

that is stable along the nq-axis. Thus, if there is no predator, the prey population reaches a
steady state that is directly proportional to the size of the basic resource, r (see also section
3.2) .

A third equilibrium, F5, entails positive populations of both species. If n; > 0 and
ng > 0, setting ng = 0 yields
fc _ 1/0&3
= % ny = qny. (24)
m7s

=:q

ns

Hence, a positive equilibrium exists if and only if the condition

fe> (25)

/%3 can be expected to be a small number

holds, which has already been assumed. Since fy;
in relation to fc, this assumption doesn’t appear to be restrictive. Upon subsitution of (24)

into nn; = 0 one gets

ny =

r <0(61 + qe3)>ﬁ1/a1
/e T+ mg ’

22The equations (23a) and (23b) constitute a system of two differential equations. To avoid clumpsy

phrases we refer to (23a) and (23b) as system (23).
ZFor the definition of 7; we refer to (20c).
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which together with (24) describes the positive equilibrium E,. Observe that for all equi-
libria it is true that if an equilibrium population is positive, it is proportional to the size of

the basic resource, r.

As for the stability of the positive steady state, the Jacobian of the simplified system
(23) evaluated at E, can be shown to have the following pattern of signs (cf. appendix B):

— som ahl/anl 87.11/8713 (- -
sgn(J) = sg <8h3/8n1 8h3/an3> - <+ _)- (26)

Therefore, Tr(.J) < 0 and |.J| > 0, implying that the equilibrium FEj is locally asymptotically

stable by the Routh-Hurwitz criterion. These results are summarized as follows:

There are three equilibria. FEy = (0,0) is locally asymptotically stable along the ns-azis,

E, = (11,0) is locally asymptotically stable along the ni-axis, and

B= - <c<e1+qe3)>ﬂl/m r <c<e1+qe3>>ﬁl/m
T\ T e T mg

15 locally asymptotically stable.

The global dynamic behavior of solutions can be determined using the phase diagram
of figure 9, whose derivation is as follows. From (24), the isocline n3 = 0 is a positively
sloped straight line through the origin (unionized with the ni-axis) in (ny, ns)-space if
condition (25) holds. Setting n; = 0 and solving for nj yields the following expression
(unionized with the ng-axis) for the isocline n; =0 :

preiny [51 - Wi/ﬁl(nl/T)al/ﬂl]

es(ay + ﬁl)ﬁ/ﬂl(nl/r)al/ﬁl — Bizies

As for the denominator, it is straightforward that

/61 Bl/al 1
denominator ; 0 <= nm =7 ( Zl> — = 1. (28)

< oy + B 711/011

Thus, there is a vertical asymptote at n,. Similarly, under the condition n; > 0,

numerator ; 0 — § 7. (29)

Therefore, the isocline cuts the nj-axis at the equilibrium E; where ny =7; > n, (and at
the equilibrium Ey, where n; = 0). Comparing the sign patterns of the numerator and the
denominator shows that the isocline lies below the n;-axis for 0 < ny < ny; and ny > ny,

while it lies above the axis if n; < n; < ny.

As shown in appendix B, the cross partial derivatives are
on on
—L <0 and =— > 0,
8’/13 877,1
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Figure 9: Phase diagram of the simplified system (23)

respectively. These partial derivatives give rise to the 4+ and — signs indicating the directions
of motion of the zero isoclines.?! Putting all this information together yields the phase
diagram in figure 9. For the sake of completeness, it is shown in appendix C that the slope

of the isocline ny = 0 is negative if n, < n; < ny.

The phase diagram reveals that the equilibrium FEj is globally asymptotically stable
for strictly positive initial values. The proof relies on the fact that it is always possible
to draw a rectangular closed region from which the trajectories cannot escape (e.g. the
dashed rectangle in figure 9). Therefore the differential equations have a solution defined
for all ¢ > 0 (Hirsch and Smale, 1974, p. 172). According to the Generalized Poincaré-
Bendixson Theorem (cf. Perko, 1996, p. 243), any limit point of trajectories must be an
equilibrium if there exists neither a closed orbit nor a separatrix cycle. As the region under
consideration contains just one equilibrium which is locally asymptotically stable, there
is no separatrix cycle. Closed orbits are ruled out by the direction of movements in the
four regions separated by the zero-isoclines, or, more rigorously, by Dulac’s criterion (cf.
appendix D). It follows that there is just one possible limit point of trajectories if ¢ — oo,

the equilibrium F,. This proves global stability. The analysis is summarized as follows:

FEach trajectory of the simplified system (23) converges to an equilibrium. If n1(0) =0 <

24Due to the existence of the vertical asymptote, there is one specialty to be taken care of. Above but
near the isocline 11 = 0 in the region where ng is negative, n; < 0. As n; > 0 below 17 = 0 in the positive
region, the question arises where the sign of 77 changes. Inspection of the simplified equation (23a) shows
that a sign change of the isocline 71 = 0 derived from (27) (or from n;y = 0) is possible only if the simplified
equation (23a) has a vertical asymptote at ny + mns = 0. Thus, if n; > 0 the sign change must occur in

the irrelevant region where nz < 0.
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n3(0), im0 (n1(t),n3(t)) = Eo. If n1(0) > 0 = n3(0), limyoo(ni(t),n3(t)) = Ey. If
n1(0) > 0 and nz(0) > 0, limy_, o (n1(¢), n3(t)) = Es.

It is worthwhile to compare the simplified system (23) with the following ratio-
dependent predator-prey model recently extensively analyzed in mathematical biology, e.g.
by Kuang and Beretta (1998):

iy =1 [a (1 - @) - L} , (30a)

. fm
= — —d]. 30b
M3 =1 [nl + mng ( )

Remarkably that the simplified equation (23b) is qualitatively equivalent to (30b). Although
(30a) is rather distinct from the simplified equation (23a), the dynamics of both systems are
similar if fe > fy;/a?’ and 0 < o < 1 in the microfounded model (23) and f > d and am > h
in the conventional model (30), respectively. Kuang and Beretta (1998) have shown that
the latter system possesses a unique and globally stable positive equilibrium if f > d and
am > h. In fact, the phase diagram of (30) can be shown to look exactly like in figure 9 if
f > d and am > h. Empirically, it would be impossible to distinguish whether a given set
of observations was generated by model (30) or by the simplified system (23), respectively.

The condition fe > v3/®

® is necessary and (given other assumptions about parameters
following from the micro approach) sufficient for the existence of a positive equilibrium in
the microfounded model. In contrast, f > d is just a necessary condition in the biological
model (30). If am < h, such an equilibrium exists only if f is suitably bounded from above
(Kuang and Beretta, 1998, p. 392). In that case, the equations (30) can generate completely
different dynamics. E.g., it is possible that the positive equilibrium FE, is locally but not
globally asymptotically stable, and one or both species could become extinct. Moreover,
even limit cycles or heteroclinic cycles are possible (cf. Hsu et al. 2001). All these cases are

excluded in the microfounded model.

If f <dor fe< %1/ “*_ respectively), the positive equilibrium disappears in both
models. However, this case is rather irrelevant in the microfounded model. Note that
fe = a1z1e3/(B1e1) and that ey, e3 and «ay, 5y should reasonably be of comparable magni-
tude, respectively, while z;, the maximum amount of biomass that the prey could offer for
transactions, should reasonably exceed the natural death rate of the predator, v3 < 1, raised
to the power 1/ag > 1. Thus, the analysis of this case doesn’t appear to be empirically

relevant.

In conclusion, while the biological model (30) is capable of explaining species extinc-
tion for am < h even if f > d, in the simplified system (23) all species with positive initial
populations will survive and coexist in the long run. In other words, if Allee’s Law is ne-

glected (as it is by assumption in the simplified system (23)) the approach of the present
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paper partly reproduces the dynamics of conventional population models but adds more
stability by excluding extinction. As will be shown in the next section, the phenomenon of

extinction can be reintroduced by taking Allee’s Law into account.

3.3.2 Reintroducing Allee’s Law

Reintroducing Allee’s Law amounts to accounting in (23) for A%(n;) as defined in (14).
As a first step, observe that the phase diagram can now be partitioned into three regions
depending on the values of n;. As long as n; > n; for i = 1, 3, the phase diagram in figure
9 applies as before, because we know from figure 9 that the vector field generated by the
simplified system (23) always points inwards in any closed rectangular region lying in the
positive quadrant. If n;, < n; for i = 1 and/or i = 2, the dynamics will change. The
result will depend on the relative position of the equilibrium FE,. Figure 10 illustrates the
situation for the case where the equilibrium values of n; and n3 both exceed n; and ns,
respectively. Note that the differential equations are continuous at (ny,n3) = (71, n3). It
remains to determine the shape of the isoclines in the regions to the left of n; and below

ns.

ns

ny

Figure 10: Partitioning the phase diagram

As there is a large set of feasible parameter configurations giving rise to various dy-
namics, this section solely offers an analysis of representative phase diagrams without ana-
lytically investigating the local stability or instability of equilibria, which is straightforward
in most cases. Also, whether closed orbits can be excluded is not explicitly investigated
as the phase diagrams reveal that trajectories are always trapped in either the basin of
attraction of the positive equilibrium or in a region where at least one species eventually

becomes extinct.

We begin with the case of a small predator population, that is, in the region below

ng. The shape of the isocline n; = 0 is left unchanged, while n3 = 0 can be solved for n; to
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yield
(ysits) "/ mng

ny = ’
feng/® — (ysing) /o3

which is positive at ng = ng due to (25). At n§ := y3n3/(fc)*® < ng, there is a horizontal

(31)

asymptote. As ng declines further, ny in (31) becomes negative. In addition, it is shown
in appendix E that a3 < 1 is a sufficient condition for the slope to be negative. Thus, the
relevant part of the isocline has the shape shown in figure 11.

ns

7;L1:0 n3:O

Figure 11: Dynamics in case of ng < ng

There emerges a new equilibrium FEj5, which is unstable. As the direction arrows
indicate, the equilibrium E5 may even be approached if n3 < ng, that is, if the predator is
an endangered species. Extinction of the endangered species is certain, however, if ng < nj.

The system then approaches the equilibrium F; on the ni-axis, where only the prey survives.

At this point it is worthwhile to consider the consequences of varying the size of the
basic resource, r, as studied more broadly in Eichner and Pethig (2004). While the isocline
ng = 0 is independent of 7, the ny = 0 locus will shift to the left as r is parametrically
reduced. Figure 12 shows a case, where the equilibrium F, as well as the equilibrium FEj
have vanished. As the direction arrows indicate, the equilibrium FE; will be approached.
Note, however, that this result presupposes n; > ny, as the modifications of the dynamics

arising from n; < n; have not yet been taken into account.

We now turn to the case of a small prey population, that is, to the region left of 7.
In that case the shape of the isocline 13 = 0 remains unchanged, while n; = 0 from (23a)

can be solved for n3 to yield

Sreiny [Zln}/ﬁl _ (mﬁl)l/ﬁl(nl/r)al/ﬁl}

ng = - — (32)
es(ar + A1) (i) V0 (ny /) /B — B Z1e3n,
Recall that 0 < a; < 1 and 3; > 0. As to the denominator, it is straightforward that
denominator = 0 <= ny = ror/(@=1) <Lzl>ﬁl/(all) _ =:nl.  (33)
< > o + B (o) /e
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Figure 12: Dynamics in case of ng < ng if Fs and E3 have vanished

Thus, there is a vertical asymptote at n{. Similarly,

1
ar/(a1—1) = ar—1 .
numerator = 0 <= n; = r /o) /o )W = . (34)

Thus, the isocline cuts the n;-axis at 7; < n{. Similar considerations to those employed
to rationalize the isocline n; = 0 in figure 9 lead to the graph of the isocline shown in
figure 13. As for the 4+ and — signs beneath the isocline, the remarks in footnote 24 apply
analogously.

ns

Figure 13: The isocline n; =0 if ny < ny

For the dynamics it is important whether a part of the isocline (32) in the positive

region lies to the left of n;. Closer inspection shows that
ny ; 1 < 1 ; ny.

Thus, if n; < 71y, there is a relevant positive part of (32) lying to the left of n;. Similarly,
we find that

n‘f ; 77L1 e 77L1 ; ng.
Therefore, the vertical asymptote of (32) lies to the left of n; if and only if 7y lies to the

left of the asymptote at n, of equation (27). Proceeding under the reasonable assumption

n1 < n, it follows that there are essentially two cases to be considered.
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First, suppose 17 < n,. Figure 14 depicts a possible configuration in this case. Other
configurations are feasible, depending on the relative position of n;. In case of figure 14,
the predator will go extinct if the initial values of ny and ng are such that the system starts
below the isocline 13 = 0 or sufficiently far to the left of the n; = 0 isocline. Even the prey

may perish as the equilibrium at n; = 1, is unstable.

i T 1

Figure 14: Dynamics in case of ny < ny if ny < ny

Second, let n, < n; < M. This constellation implies that the right part and the left
part of n; = 0 are both valid only up to the point where n; = n;. Moreover, as (23a) is
continuous at ny; = nq, the isocline is also continuous here. One possible configuration is
shown in figure 15, where the positive equilibrium F, vanishes. Depending on parameter
values, this equilibrium could as well remain in existence. In case of figure 15, the predator

cannot survive in the long run.

ns

[ U ——

3
Lo
3

E(] ﬁl
Figure 15: Dynamics in case of ny < ny if ny <ny <m

Putting that all information together yields the complete phase diagram, whose shape

depends on the specific values of 7 and nj. Figure 16 provides an example.

Although not all possible configurations have been analyzed in detail in this section, it
is straightforward to consider the principle shapes of alternative (complete) phase diagrams.

As our examples demonstrated, it is fairly obvious that the only possible limit points for
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ns

ny

EO E'4

Figure 16: A complete phase diagram

t — oo are equilibria. Exact proofs could be given along the lines in section 3.3.1. We now

summarize the main results:

Let (0,0) < (fy,73) < Fy. Then each trajectory of system (23) converges to an equilibrium.
The positive equilibrium Fy is asymptotically stable and its basin of attraction covers at
least (ny,n3) € R%.. There exist initial values ny €]0, 71 and n3 €]0, 03[, respectively, such

that the predator or both species eventually become extinct.

3.4 Microfounded population dynamics in case of resource compe-
tition
A model of resource competition is easily derived from the three-species model (17) by

assuming that the top predator is absent (n3 = 0). In that case the equations (17) simplify

to

o= {Al(nl)- <L>a L2 —71] , (35a)

ni1€e1 + Naesy

hy = n2-[A?(m)(L)M-zgt%]. (35b)

ni1€e1 + Naesy
As in the last section we require

Assumptions. The initial values of ny and no are non-negative. If ny = ny = 0, then

hlthZO.

As shown in appendix F n; and n, are continuous on ]R%r.
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3.4.1 Neglecting Allee’s Law

In this subsection we neglect Allee’s Law, i.e. A'(n;) = A%(ny) = 1. We infer from

ny = ne = 0 and (35) that a positive steady state will exist if and only if the condition

1/ N\ l/a
6?1 Zfl ! B 632252 2 (36)
g Y2

vV Vv
=Uul =Uu

is satisfied.?> The zero isoclines of (35) are given by

ny = é’th — 2—;711 or n; =0 for ny =0, (37a)
no=Zuy—2ny or my =0 for ity = 0. (37b)

Thus, the interior segments of the zero isoclines are negatively sloped straight lines which
coincide if condition (36) holds. Otherwise they are parallels. Taking into account that
all partial derivatives of (35) with respect to n; and n, evaluated at n; = 0 and ny = 0,
respectively, are negative, yields the phase diagrams shown in figure 17. Observe that the
phase diagram in case of u; < us can be obtained by simply interchanging the axes in the

diagram for uy; > us.

N9 U] = U9 No U1 > U9

EQ m:hg:(]

+ N\ — ‘/(_l

AN _

Ey - ™M Ey m
1

Figure 17: Phase diagrams of system (35)

If uy = wusg, there is a continuum of equilibria in the positive orthant given by the
straight line ny = ruy/e; — egng/es. As each trajectory converges to one of these non-
isolated equilibria (or stays at the origin), the dynamic system (35) is quasi-globally stable
in the sense of Uzawa (1961). If u; > uy (u; < ug, resp.), the equilibrium FE; (Es, resp.)
is globally stable, while Ey (Ej, resp.) is stable along the ns-axis (ni-axis, resp.). Ej is
unstable in any case. Observe that there is no need to analytically exclude closed orbits or

graphics as the trajectories are always trapped in a positive invariant region.

25 A similar result has been established by Tschirhart (2002) in a somewhat different model.
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Summarizing, if Allee’s Law is neglected in the population dynamics, a stationary
equilibrium where both species coexist represents a knife-edge case whose existence has
been established in the numerical example 2 of section 3.1. Usually only one of the species
will survive in the long run, depending on the relative magnitudes of u; and wuy. Thus, u;

and us may be considered as measures of competitiveness in our microfounded model.

We conclude this subsection with a brief comparison of the model explored here with
Gause’s model as put forward in Clark (1976, p. 311 - 314). In both models the n =
0 isoclines are straight downward sloping lines. But while in our model both isoclines
are parallel, in Gause’s model these slopes differ, in general. As a consequence, both
models predict the survival of only one species as the generic case and both imply long-run
coexistence for some subset of parameter values. That subset is larger in Gause’s than in
our model, however, because in the former the n = 0 isoclines may exhibit a unique interior
point of intersection. In conclusion, both models imply similar population dynamics but

our microfounded resource competition model does not exactly reproduce Gause’s model.

3.4.2 Reintroducing Allee’s Law

We now aim at answering the question whether our results go through when Allee’s Law is
reintroduced. For that purpose we drop the assumption A*(n;) = 1, i = 1,2, and proceed
with the analysis of the zero isoclines. If ny < n; and ny < 7o, respectively, the zero-isoclines

of system (35) are given by
1/a1
ny = Ly (”—) —&ny or ny=0 forn =0, (38a)
ny = Luy (@) —2ny or ny=0 for ny =0. (38h)

Due to o €10, 1] equation (38a) is a convex function intercepting with the n;-axis at 0 and

€1 or/liea) 1/(1
(—) ar/men) = g5 (39)

TUq

As (38a) has the same value at ny = ny as equation (37a), the isocline is continuous at

ny = ni.

The shape of the complete n; = 0 isocline depends on the value of n;. Note that

(37a) hits the nq-axis at n; = ruy/e;. Comparing 7q from (39) with n; shows that

ny ;771,1 < 1 Srul/elzﬁl.

>
From the n; = 0 isocline which is illustrated in figure 18 we conclude that there are
no equilibria in R% | unless 7y < rui/e;. If 7y = rui/er, 7y = 0 only if ny = 0 or

33



na ’TNL1<’I‘U1/61 na 1 :TU1/61 na 1 >’I“U1/€1
ez |, €2 [~ €2 |~

. n 5 n1 S N

1
N rui/er 1 =1 rgle

Figure 18: The isocline n; =0

(n1,mn9) = (n1,0). Otherwise, ny < 0. If 7y > ruy/e;, ny = 0 only if ny = 0, while n; < 0

otherwise.

The shape of the complete ny = 0 isocline can be determined along the same lines.

Using the information that (37b) cuts the ny-axis at ny = ruy/es and defining

as/(1—as
e <2> /( )ﬁ;/(l_a2)7

TU9

as the positive interception with the nsaxis, it follows that

, < L <
Mg <My = N2 Tus/es.

If ny > ruy/eq, then ny; < 0 whenever n; > 0 (and n; # ny in case of Ny = ruy/ey),
irrespective of the state of competitor 2. The immediate consequence is that species 1
cannot survive in the long run. An analogous argument applies to species 2. We thus focus

on the more interesting case where 1y < ruj/e; and niy < ruy/es.

Suppose first u; = us. In that case the linear parts of both zero isoclines coincide.
The resulting phase diagram is shown in figure 19. The lower (upper) linear part which is

drawn solid as well as dotted belongs to n; = 0 (72 = 0) but not to ny =0 (n; = 0).

As the phase diagram reveals, a new equilibrium FE3 emerges, which is unstable. If
both species start with sufficiently similar initial values greater than 7n;, i = 1, 2, Allee’s Law
does not change the dynamics. A species can become extinct, however, if its initial value
is below the respective n; or if the initial value of the respective other species is sufficiently

large in relation to the own initial value.

Next, let u; > wug, implying that the linear part of the n; = 0 isocline lies above the

linear part of the isocline 7y = 0. The resulting phase diagram is shown in figure 20. Note
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Ny

ny

Figure 19: Phase diagram if uy = us

that equilibrium E, is a saddle, as

. «@ a;—1
ony - 1 re ! ny re; ! re?
— « L
- 141 ~ - - 1~ -
ni nie; + Nagés n1 ni€1 + Noesy (n161 + n2€2)2

6711
ni_gp, req o ajnie;
=—2 | —— l——— ) >0.
ni ni€e1 + Noes nie; + naeés

All remaining partial derivatives of n; and n, evaluated at E, are negative. Thus, the

n1=0

determinant of the Jacobian is negative:

], = Ony Ony Oy Ony
Onq, Ong  Onsg Ony

confirming that F)j is a saddle. In case of u; < uy the corresponding phase diagram would

<0,

look like figure 20 with interchanged axes.
Ny

ny

Figure 20: Phase diagram if uy > us

As the condition u; = uy represents a knife-edge case, the situation in figure 20 where

up > uo is most interesting. Comparing that constellation with the case u; > uy in figure
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17 shows that reintroducing Allee’s Law in the formulation of the differential equations has
no consequences for the qualitative behavior of solutions as long as the initial value of the
more competitive species 1 exceeds nq. If, however, the initial value falls short of 71, Allee’s

Law implies that the less competitive species 2 survives while species 1 becomes extinct.

4 Concluding remarks

This paper provides a microfoundation of population growth based on economic method-
ology. To that end, we assume that representative individuals of species behave as if they
maximize their net offspring subject to a budget constraint which reflects scarcity of its
own biomass and scarcity of prey biomass. For a parametric class of net offspring functions
we obtain differential equations which are comparable to those suggested in the ecological
literature. More specifically, for the case of a single species our model is shown to yield the
well-known Verhulst-Pearl logistic growth function. With two species in predator-prey re-
lationship, we derive differential equations whose dynamics are similar to the predator-prey
model with Michaelis-Menten type functional response. With two species competing for a
single resource we prove that coexistence is feasible but our analysis shows that coexistence

is a knife-edge case.

The primary focus of the present paper is on methodology and conceptual analysis.
But empirical applications in case studies ought to be an important end once the theo-
retical foundations are well understood. Tschirhart (2000, 2002, 2004) points to various
possibilities of tapping available relevant data to find realistic parameter values and to test

various hypotheses implied by the formal model.

Appendix

A Continuity of (23a) and (23b) at the Origin

We begin with the special case where A%(n;) = 1. Using the definition of m, it is obvious that

nier + nges < e1(n1 + mng) which can be rearranged to

nieq + nses <e

0<
T Ny +mngs

Applying some transformations yields
a1 B1 Qi
70 c|nie; + nges 70
<—) <¥) —’71] <n <—> (Cel)ﬁ1 — Y1imn1.
ny ni + mns 71
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As n1 — 0, both interval boundaries converge to zero if 0 < a1 < 1. Thus,

. [(Tg)al <C[n161 +’n363])ﬂ1
lim nq — _ -7
(n1,n3)—(0,0) 1 ni + mns

Given that A'(ny) = 1, this proves continuity of (23a) on R2 if iy = 0 for ny = ng = 0 by

=0.

definition. If A'(n1) according to the definition in (14) is used, the argument is even simpler.

Continuity of equation (23b) is proven similarly.

B Derivation of (26)

The partial derivative of the simplified (23a) with respect to ny evaluated at nqy =0 is

_ <,6 n1n3(m61 — 63) Y ) <L>a1 <C[’nlel + ’n363]>ﬁ1 (Al)
. ! (n1 + mn3z)(nie; + nzes) Y\, n1 + mns '

Using the definition of m, it follows that me;—es = (a1+/51)e3/f1—es = ares/B1 > 0. Substituting

Oiny
(9’”1

n1=

into (A1) shows that the first term in parentheses and therefore the entire expression is negative.

The partial derivative of the simplified (23a) with respect to ns,

ony n?(es — mey) < r )al <c[n161 + n3eg])ﬁ1

ong " (n1 + mns)(nie, +nzes) \ny ny + mns

is negative since es — me; < 0.

Finally, it is straightforward that the partial derivatives of the simplified (23b) are

6- 2 a3
ng azmnj < fen ) >0

ony nl(nl + mng) ni + mns
and
Ong|  _ __asmns ( fens )ag <0, (A2)
onsg | . n1 +mns \ny +mns
ng=—

proving (26). Note that the signs of the cross partials are determined even off the isoclines.

C The slope of (27)

Differentiation of
frein [51 — ' (nl/r)al/ﬁl]

e3(on + 51)’711/B1 (ny/r)ea/Br — Biz1es

with respect to ni, letting D be an abbreviation for the denominator, yields:

ns =

(5161 [21 — (m/?")al/ﬂl] — ey (nl/r)al/ﬂ1> D

ny
Bnl

n1=0

eresa(og + ﬁl)’hl/ﬁl (nq/r)21/Bs [51 - ’Yll/ﬁl (ny/r)1/Br
2
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Recall relations (28) and (29). As the denominator is positive if ny > ny, this expression is negative
if

(ﬁl [21 — 711/’81 (ny/r)®/Pr| — 041’711//81 (nl/r)m/ﬁl) D

< eson(on + Br)y 7 (na fr) 1/ [y — (m/r)al/ﬁl] .

The right-hand side of this inequality is positive as z; > 711/’81 (nl/r)o‘l/ﬁl if n; < my. The left-
hand side is negative as n; > n; implies that D > 0 and $1z1 — (aq + 51)’711/’81 (7”L1/7“)0‘1/ﬁ1 < 0,

respectively. This proves that the isocline n; = 0 is negatively sloped if n; < ny < ny.

D Exclusion of closed orbits

Applying Dulac’s criterion (cf. Perko, 1996, p. 262) to the simplified system (23), there is no closed
orbit lying entirely in Rﬁ_ . if there exists a function B € R?i— ., such that the trace of the Jacobian
of (Bny, Bng) is not identically zero and does not change sign in Rﬁ_ 4. Now consider the function
B = 1/(n1n3). The partial derivative (A1) has been calculated under the assumption that n; = 0,
which has had just the effect that the term in square brackets in (23a) has been omitted in (A1l).

Thus, it is straightforward that
d(Bny) 1 0

8n1 N ning 8n1

n1=0

for all (ny,n3) € B2, . An analogous argument shows that, using (A2),

d(Bnz) 1 9y
877,3 N nins 8n3

n3=0

for all (n1,n3) € R?i— 4. As it follows from appendix B that both expressions are negative, the trace
of the Jacobian of (Bni, Bng) is negative for all (n1,n3) € R2 , proving that there are no closed

orbits lying entirely in Ri 4

E The slope of (31)

Consider the region where n§ < n3 < n3. As the denominator of the derivative of (31) with respect

to mg is positive, it suffices to consider the numerator, which is

~ o o ~ « 1 (87 ~ «
(y3723) /%2 m [fcné/ B — (yaiiz) Y 3] - a—3fC”;,/ Sm(yaiis) /0,

A sufficient condition for this expression to be negative is ag < 1:

O‘3(737~13)1/a3m [fcné/as - (73?33)1/0[3} — fcné/a3m(ry3ﬁ3)1/as <0

— (a3 — l)fcné/ae’ — as(ysng) '/ < 0.
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F Continuity of (35a) and (35b)

In this appendix we prove that both 7; and ny are continuous on R? | although the right-hand
sides of (35a) and (35b) are not defined at (n1,n2) = (0,0). Observe that rnie; < r(nie; + noeg)
can be rearranged to

rep r

0< ——— < —
nie1 + Ngeo ny

Applying some transformations we obtain

ay

rel =51 a1, 1—ay =61

—ymn <ng || —————— | 2y —n| <r%ng T2 = yng.
niey + Tn9€9

As ny; — 0, both interval boundaries converge to zero if ay €]0,1[. Thus,

re o
lim ] S S— Zfl -1 | =0.
(n1,n2)—(0,0) niei; + noey

Given that A'(n;) = 1, this proves the continuity of (35a) on R% if 5y = 0 for ny = ny = 0 by
definition. If A'(n;) is set as in (14), the result would hold all the more. Continuity of equation

(35b) is proven similarly.
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