Dynamic Macroeconomics

Problem Set 3

Non-linear difference equation systems like
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can, in general, not be solved analytically. However, one can obtain an approximate solution to the
system by linearizing it around the steady-state solution £* and c¢*. If one expresses the variables of the
system in logarithms before doing the linearization, one calls this process log-linearization. This approach
has the added benefit that the resulting expressions are easily interpreted as percentage deviations from
the steady-state values. The intellectual background of the technique of log-linearization consists of
some properties of the logarithmic and exponential function and one the property that any differentiable
function can be approximated by a linear function. First, note that for any variable x; the following is
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where 7; = ln( ) gives the percentage deviation of x; from x*. Second, note that for the exponential
function the following approximation holds
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which can be derived by taking a first-order Taylor expansion of e* around the point z* = 0:
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Now we can apply these techniques to the equations of our equation system. For illustration we look
only at condition (2). First use the transformation in (3) to get
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which can be approximated by (using the result in (4))
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where the last line uses the fact, which can be seen from (1), that in the steady-state the relationship
L =1+ aA(k*)*"! — §] holds.



