
Price Stability, Inflation Convergence and Diversity in

EMU: Does One Size Fit All?†

Axel A. Weber

Deutsche Bundesbank

Guenter W. Beck††

Goethe University Frankfurt and CFS

This Version: November 2005

Preliminary Version: November 2003

Abstract

Using a unique data set of regional inflation rates we are examining the extent and
dynamics of inflation dispersion in major EMU countries before and after the introduction
of the euro. For both periods, we find strong evidence in favor of mean reversion (β-
convergence) in inflation rates. However, half-lives to convergence are considerable and
seem to have increased after 1999. The results indicate that the convergence process is
nonlinear in the sense that its speed becomes smaller the further convergence has proceeded.
An examination of the dynamics of overall inflation dispersion (σ-convergence) shows that
there has been a decline in dispersion in the first half of the 1990s. For the second half of the
1990s, no further decline can be observed. At the end of the sample period, dispersion has
even increased. The existence of large persistence in European inflation rates is confirmed
when distribution dynamics methodology is applied. At the end of the paper we present
evidence for the sustainability of the ECB’s inflation target of an EMU-wide average inflation
rate of less than but close to 2%.

JEL Classification: E31, E52, E58

Keywords: Inflation convergence, deflation, ECB monetary policy, EMU, regional
diversity.

†We are grateful for helpful comments from seminar participants at the European Cen-
tral Bank (ECB) and the Annual Meeting of the German Economic Association in Zurich
in September 2003. This paper is part of a CFS research program on ‘Local Prices and Ag-
gregate Monetary Policy’. Financial support by the CFS is gratefully acknowledged. Part
of the work on this project was completed while Axel A. Weber was visiting researcher and
Guenter W. Beck was an intern at the ECB. Of course, the authors are responsible for any
remaining errors.

††Corresponding author. Tel.: ++49-69-79828320. E-mail: gbeck@wiwi.uni-frankfurt.de

mailto:gbeck@wiwi.uni-frankfurt.de


1 Introduction

In January 1999, eleven European countries adopted the euro as their new cur-

rency. One year later, another country, Greece, joined the currency union, other

Central and East European countries are planning to do so in the next years. The

establishment of the European Monetary Union (EMU) has been accompanied by

heavy criticism from some economists and the success of the new currency has been

doubted for a variety of reasons. Feldstein (1997) and Obstfeld (1997), e.g., argue

that the EMU is not an optimum currency area in the sense of Mundell (1961).

Referring to Friedman (1953), they think that - in the presence of market rigidities

as in the case of European countries - nominal exchange rate adjustments across

European countries would be required to achieve necessary changes in real exchange

rates in response to asymmetric adverse shocks. Critics have considerable doubts

that a single monetary policy can adequately meet the requirements of the various

member countries (“Does one size fit all?”). One issue that was discussed in this

context are the implications of the existing large heterogeneities in economic condi-

tions across member countries on the adequacy of the ECB’s inflation target of an

EMU-wide average inflation rate of less than 2%. Sinn and Reutter (2001) argue

that due to Balassa-Samuelson effects in less developed countries such as Ireland or

Portugal, inflation rates in these countries will be relatively high. As a consequence,

price dispersion across the member countries will be large and some more developed

countries such as Germany might be threatened by deflation when the ECB strictly

sticks to its target. Therefore, the two authors call for an increase in the ECB’s

upper inflation bound by at least 0.5%. Another issue of concern is that countries’

efforts to follow a strict stability policy as prescribed by the Maastricht Treaty have

been weakened after joining the EMU and - as a consequence - inflation rates will

no longer converge but might even diverge in the near future.

In this paper, we want to contribute to the discussion on inflation dispersion across

European countries and its implications for the ECB’s monetary policy in several

ways. First, we will shed some light on the dynamics of regional inflation rates by

testing for the existence and degree of their mean-reverting behavior. This allows

us to address the important issue of whether existing cross-regional differentials in

inflation rates should be a major issue of concern for policy-makers. This would

have to be the case if we found no or only very weak indications of mean-reverting

behavior. Our second contribution is that we will provide evidence on the dynamics

of the overall inflation dispersion across major EMU countries. We are particu-

larly interested in the question of whether overall dispersion has decreased over time

(σ-convergence). Additionally, using distribution dynamics methodology, we will

analyze the within-distribution dynamics of European regional inflation rates. This

will be done both for the case of a continuous and discrete distribution. In our last

contribution, we will deal with the question of the adequacy of the ECB’s inflation

target. Using a statistically significant relationship between the cross-regional mean

inflation rate and its dispersion we compute lower bounds for the average inflation
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rate that ensure that only a negligibly small portion of regions faces deflation. We

argue that this measure can - despite some shortcomings - serve as an indicator for

the ECB to evaluate when the prevailing mean inflation rate has reached a critical

value, in the sense that at a further decrease too many regions would face deflation.

All the issues raised above will be examined using a unique set of regional aggregated

and disaggregated regional European inflation data. The idea to use regional instead

of national data is borrowed from the growth literature,1 where it has been used to

analyze convergence in per-capita incomes. While there already exists a comparable

empirical literature on regional price dynamics for the U.S.A.,2 analytical evidence

for Europe is based on national data only.3 Evidence for U.S. cities indicates the

existence of inflation convergence, but its speed is relatively slow.

The rest of the paper is organized as follows: In the next section, we present our data

set and discuss some descriptive statistics. The results concerning mean-reverting

behavior in inflation rates together with some sensitivity analysis are presented in

sections 3 and 4. Section 5 examines the issue of σ-convergence in inflation rates

and section 6 presents our results from applying distribution dynamics to our data.

Section 7 takes a closer look at the relationship between the cross-sectional mean

inflation rate and its dispersion and derives ‘critical’ mean inflation values. The last

section summarizes our results and draws some policy conclusions.

2 Data and Descriptive Statistics

In the spirit of the empirical growth literature, we are using regionally disaggre-

gated data to examine the question of inflation diversity and convergence in the

EMU. There are several reasons that make such an approach desirable. The most

obvious one is, that it enables us to increase the number of observations and thus

to obtain more precise statistical results. For the case of the EMU, e.g., any cross-

sectional examination with national data would be based on twelve observations

only. However, when regional data are used, the number of available observations

can be significantly increased. In our study, e.g., we are employing data from 77 re-

gions. Another reason for employing intra-national data is that the extra (regional)

dimension can help us understand aggregated inflation behavior as we will see below.

Finally, as each country can be considered as a miniature monetary union, the use of

regional data from well-established monetary unions can give us insights into future

developments within the EMU. In this context, the study of U.S. cities is probably

most helpful.

A shortcoming of this approach is that regional data are not readily available and

thus have to be collected in a time-consuming process. Furthermore, even if one

is willing to carry this burden, one may not be successful because some countries’

statistical offices do not compile data at a regional level. Unfortunately, this is also

1See, e.g., Barro and Sala-i Martin (1992) Barro and Sala-i Martin (1995) and Sala-i Martin
(1996a).

2See, e.g., Parsley and Wei (1996) and Cecchetti et al. (2002).
3See, e.g., Rogers (2001).
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true for some EMU countries that are therefore missing in our sample. Neverthe-

less, we managed to compile a relatively broad data base of regional CPI data that

includes most major EMU countries.4

To get an idea of the scope of our regional price data,5 we start by giving a short

description of it. An overview of the included countries and regions is given in table

1. As one can see, we are using data from six EMU countries comprising a total

of 77 regions. In our estimation analysis, we arrange these countries into two dif-

ferent groups, denoted as European ‘core sample’ and European ‘extended sample’

(see table 2 for a detailed description). These two groups differ with respect to

the sample length and the coverage of included CPI subgroups. As table 2 shows,

the European ‘core sample’ comprises data for German, Austrian, Finnish, Italian,

Spanish and Portuguese regions and includes the total index and eleven subgroups.6

For all regions, the subgroups are constructed on the basis of an identical classifi-

cation scheme, namely the COICOP (Classification of Individual Consumption by

Purpose) scheme that was introduced in most EU countries in 1995.7 In our Euro-

pean ‘extended sample’, we extend the length of the sample period considerably (by

five years). However, only total index data are available.

All data are annually and are available in index form. Inflation rates are computed

as annual percentage changes in the price index in the following way:

πt = 100 ∗ (ln Pt − ln Pt−1) = 100 ∗ (pt − pt−1) , (1)

where πt denotes the inflation rate in period t, and Pt represents the respective price

index in t. Small letters for P denote its natural logarithm.

To illustrate the importance and extent of regional inflation rate dispersion, figure

1 plots inflation rates for our European ‘core sample’.8 As one can see, regional dis-

persion is considerable, spanning a band of around 4% width. Interestingly, despite

this relatively big dispersion, only very few regions have experienced deflation in the

considered time period even when the aggregate EMU inflation rate was relatively

low in 1998. As we will see, this - in addition to the fact that EMU-wide inflation

rate has never fallen far below 2% - has to do with a statistically significant positive

relationship between the mean inflation rate and its regional dispersion.

Another interesting issue concerns the ‘anatomy’ of the 4% band.9 As one might

expect, regional inflation rates of individual countries are usually located in rela-

tively close bands around a country’s mean rate (when compared to total EMU

width). So, when several countries’ mean inflation rates are different (as is the case

4The biggest exception is France, for which no regional data are provided.
5In Weber and Beck (2001), we used an even broader sample of regional price data that addi-

tionally included North American, South American and Asian regions.
6For Austria, no data for subgroups are available.
7Italy provides regional data following the COICOP scheme from January 1996 on only and

Austria sticked to its old scheme until the end of the 1990’s.
8Figure 1 plots the annual percentage change of inflation rates computed as πt = 100 ∗ (ln Pt −

ln Pt−12) based on monthly data. In the following analysis only annual data are employed, however.
9In this context, it is noteworthy that the bandwidth varies considerably with the goods category

under consideration. This will become clear in the discussion of the descriptive statistics presented
in table 3.
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for European countries), it is tempting to suppose that the observed 4% band can be

considered to result from a ‘stacking’ of countries’ ‘bands’. However, this conclusion

is not fully correct as figures 1 and 2 illustrate. Figure 1 highlights Italian inflation

rates (total index). As becomes clear from this picture, Italian regional dispersion

is almost as big as that for the total sample. The figure for food inflation rates

(figure 2) illustrates another aspect that is not in line with the above idea and that

will become important for the interpretation of some of our estimation results. In

this figure, German data are highlighted. The picture shows that Germany changes

its relative inflation ‘ranking’ throughout the sample period: Its inflation rates lie

below the average rate at the beginning and end of the period but are above average

within the sample period.10

Table 3 provides some descriptive statistics for our European ‘core sample’. Looking

at the mean rates for the total index, we can see that the lowest average inflation

rate prevailed in Germany, followed by Finland, Austria, Italy, Spain and Portugal.

A look at the subcategories, however, provides a relatively differentiated picture

concerning the ‘ranking’ of inflation rates across countries. Whereas Germany has

the lowest inflation rates for most categories, this is not the case for the categories

‘alcoholic beverages and tobacco’, ‘clothing and footwear’ and ‘transportation’. Fin-

land has one of the highest rates for ‘health’ but the lowest rates for ‘clothing and

footwear’. Portugal on the other hand has one of the highest rates for ‘food and

non-alcoholic beverages’ but one of the lowest rates for ‘clothing and footwear’. As

we will see in the next section, these differences in the ‘ranking’ position will be

quite important in understanding some of our analytical results.

Looking at the reported cross-sectional dispersion measures, we can see that dis-

persion at a national level is generally significantly lower than at the EMU level.

Additionally, measured dispersions differ very significantly across goods categories

and across countries. In the next section, we will turn to our analytical results con-

cerning the extent of convergence in inflation rates (β-convergence) across European

regions.

3 Cross-Sectional Evidence of Inflation Convergence

3.1 Methodology

To test for mean-reverting behavior (β-convergence) in inflation rates, we are using

two different procedures. The most popular approach - particularly in the literature

on relative prices - is to use Augmented Dickey-Fuller (ADF) tests. To increase

precision, recent studies apply panel techniques developed by Levin and Lin (1992)

and Levin and Lin (1993). We will turn to this methodology in section 4. Before, we

will present results from an approach that has been intensively used in the empirical

growth literature. We think that it can be very helpful for our purposes - particularly,

10Following Sala-i Martin (1996a), we speak of ‘leapfrogging’ or ‘convergence overshooting’ in this
context. A more detailed discussion of this phenomenon and its implications for our results will be
given in the interpretation of our analytical results.
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since there are large similarities not only with respect to the nature of the data we

use but also with respect to the question under consideration. Additionally, the

methodology provides us with some measure of how fast convergence occurs.11

In analogy to the growth literature, we test for inflation convergence by setting the

average change in inflation rates over the considered sample period in relation to its

initial value, i.e., by estimating regressions of the type:

1

T
∆πi,t0+T = constant + b ∗ πi,t0 + εi,t0,t0+T . (2)

Here, T denotes the length of the sample period in years, π denotes the infla-

tion rate computed as an average annual rate and t0 denotes the initial period.
1
T

∆πi,t0+T = 1
T

(πi,t0+T − πi,t0) denotes the average change in the inflation rate over

the sample period. εi,t0,t0+T represents an average of the error terms εi,t between t0

and t0 + T . The estimations are done using OLS.

If there is convergence in inflation rates, the estimated values for b will be negative.

This would imply that prices of a country with an initially relatively high inflation

rate would increase more slowly (or decrease faster) in the subsequent period than

those of a country with an initially relatively low inflation rate. Thus, the exist-

ing inflation rate gap would diminish. As an extreme case, one could even imagine

that ‘leapfrogging’ or ‘convergence overshooting’12 occurs, i.e., that an existing in-

flationary gap not only diminishes but reverses in sign. As we will see, this actually

happens in our sample and has important impacts for the short-run analysis. The

estimated value for the slope coefficient b in equation (2) can be used to compute a

rough measure of the convergence speed. Using an expression that is analytically de-

rived in the growth literature, an estimate for the convergence rate can be obtained

by solving the expression13

b = −

(

1 − e−β∗T

T

)

(3)

for β using the estimated value for b from equation (2). The so derived value for β

gives an estimate of the proportion by which an existing inflationary gap is reduced

in each period. A problem that arises in the interpretation of this coefficient is that -

unlike in the growth literature - the identity given in equation (3) cannot be derived

in a stringent theoretical way. Nevertheless, as a comparison of the results in this

and the next section shows, its use turns out to be very illustrative.

3.2 European ‘Core Sample’: Total Period

A graphical illustration of the estimation approach is delivered in figures 3 to 5 where

we present selected graphs from our European ‘core sample’. Figures 3 plots total

index data, whereas figures 4 and 5 plot data (total period) for the subcategories

11It has to be noted, however, that - unlike in the growth literature - the reported measures for
the adjustment speed lack a sound theoretical foundation. Still, they can give some idea on how
fast convergence occurs. Additionally, the results are in line with some more accurate measures
derived in the next section.

12See Sala-i Martin (1996b) for terminology.
13See, e.g., footnote seven of Sala-i Martin (1996b)
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‘clothing and footwear’ and ‘food and non-alcoholic beverages’. In each figure, we

plot changes in inflation rates over the respective sample period versus initial in-

flation rates. Included in each figure is a regression line that represents the fitted

values from regression equation (2). As figures 3 to 5 indicate, inflation convergence

does not seem to be very pronounced for the total index (when the total period is

considered), but is very strong for the two subcategories ‘clothing and footwear’ and

‘food and non-alcoholic beverages’.

This impression is confirmed by our analytical results that are reported in table 4.

As column two shows, all coefficients but the one for ’health’ have the correct sign

and all of the coefficients but the one for ’health’ are significant. The values for the

subcategories differ considerably and lie in the range between -0.06 (‘furnishings,

household equipment and routine maintenance of the house’) and -0.333 (‘commu-

nications’) for the subcategories. The half-lives of inflation convergence derived for

these b-values are reported in column five. For ‘food and non-alcoholic beverages’,

‘health’, ‘communications’, and ‘recreation and culture’, no half-lives could be com-

puted as the solution of the nonlinear expression for β produces complex numbers.

However, as the respective b-values show, convergence for these categories not only

is present but occurs - given the absolute values - even at a higher rate than for

the other categories. This is confirmed by inspection of figure 4 that demonstrates

the strong negative relationship between changes in inflation rates and initial infla-

tion rates for ‘food’-inflation rates. For the cases where half-lives could be computed,

values vary between 1.4 years (‘alcoholic beverages and tobacco’) and 8.7 years (‘fur-

nishings, household equipment and routine maintenance of the house’). For the total

index, we obtain a value of 5.5 years. This result might appear somewhat puzzling:

Whereas we obtain a b-value of −0.077 for the total index, all obtained values for

the subcategories of the total index (with the exception of clothing and footwear)

are larger in absolute value (with an average value of -0.18) and thus indicate higher

convergence. To see, how such a result can arise, consider a case where we have only

two regions (denoted as region 1 and 2) and two goods (denoted as subcategories A

and B): Then, when there is a switch in the ‘ranking’ of good’s B inflation between

region 1 and 2, i.e., at the beginning of the sample period, the inflation rate for

good B is higher in region 1, and at the end of the period it is higher in region 2,

we would get exactly the same results that we find in the data: While both goods

exhibit strong convergence (highly negative slopes), the convergence for the total

index is slow (slope is almost horizontal). The phenomenon that an existing differ-

ential not only vanishes but reverses has been called ‘leapfrogging’ or ‘convergence

overshooting’ in the growth literature (see Sala-i Martin (1996b)). To illustrate that

this ‘inflation switching’ actually happens in the data, we already discussed figure 2

that shows this pattern for the case of German ‘food’-inflation.

3.3 European ‘Core Sample’: Pre-EMU and EMU Subperiod

Table 5 reports estimation results for the pre-EMU and EMU subperiod of our Eu-

ropean ‘core sample’. Looking at the figures for the first subperiod, we find strongly
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significant and very fast convergence for both the total index and most subcate-

gories (exceptions: clothing and footwear and health). The estimated b-values that

are inversely related to the convergence speed now have an average value of -0.58

compared to -0.18 for the total period. Half-lives are much lower than observed for

the total period and are usually far below one year.

For the EMU subperiod, we also find strongly significant convergence for both the

total index and all subcategories (exception: clothing and footwear). However, con-

vergence speeds have fallen considerably. The average b-value for the subcategories

is -0.23, i.e., has fallen by around 60% in absolute value relative to the first subpe-

riod. Half-lives have risen correspondingly and most of them are now longer than one

year. The considerable differences in convergence speed between the two subperiods

can be explained by the countries’ enormous efforts in the pre-EMU subperiod to

meet the Maastricht criteria that set strict limits on prevailing inflation rates. Thus,

the extraordinarily high convergence rates in the pre-EMU period are probably due

to such factors that could easily be affected by governments but had - as the results

for the second subperiod show - only short-run impacts. Referring to possible expla-

nations for these results, we think that fiscal policy and institutional factors such as

changes in CPI compositon/weights are responsible for the convergence dynamics in

the years before 1998. Another factor that has probably played an important role is

inflation expectations that were adjusted downward in the years immediately before

the introduction of the euro.

Comparing the results for the subperiods to those of the total period, one observa-

tion is particularly noteworthy: The estimated b-values of most categories generally

indicate smaller convergence in both subperiods than they do for the total period.

Thus, convergence speeds for the total period cannot be derived as an average of

the speeds prevailing in the two subperiods. This phenomenon can be explained as

follows. When inflation rate adjustments are nonlinear in the sense that convergence

is higher for higher inflation rate gaps and is slows down when gaps become closer,

we combine early periods with large convergence with later periods with smaller

convergence when we consider long periods of time. Hence, the convergence rate

derived for a longer time period (total sample period) is smaller than that for a

shorter time period (pre-EMU and EMU subperiods) since the OLS estimate of b is

negatively related to T.

3.4 European ‘Extended Sample’

In table 6, we report convergence results for our European ‘extended sample’. The

results confirm major findings from the ‘core sample’. All coefficients are signifi-

cant and demonstrate convergence in inflation rates across European regions. The

reported half-life for the total period is 4.2 years, for the first two subperiods we

obtain lower rates ranging from 1.3 years for the pre-EMU period to about 1.4 years

for the first subperiod. For the EMU subperiod, we obtain the highest half-life (15.2

years) that compares to the 19.6 years we obtained for the ‘core’ sample. A com-

parison among the three subperiods clearly shows us the efforts of EMU countries
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to meet the Maastricht criteria. As table 6 shows, half-lives are low in the period

before 1995 and fall somewhat more (1.3 years) in the pre-EMU period. However,

as the increase in the EMU-period shows, these efforts have had only very short-run

effects.

Summarizing the results of this section, we can conclude that there is evidence of

significant inflation convergence across European regions. We have also seen that po-

litical impacts to speed up convergence are successful only in the short-run and that

economic fundamentals seem to matter more in the long-run. Our estimates for the

long-run convergence speed suggest a relatively low degree of inflation convergence

with a considerable long-run half-life.

4 Panel-Unit-Root Evidence of Inflation Convergence

In the last section, we demonstrated that inflation convergence occurs across Eu-

ropean regions. However, the speed at which it occurs is surprisingly low. In this

section, we want to investigate this issue a little further by using an alternative

methodology that makes more explicit use of the time series dimension of our data.

Due to the shortness of our sample period, an analysis of individual inflation series

does not seem to be reasonable. However, exploiting the large number of cross-

sectional units, we can pool the data and use panel data econometric methods. In

analogy to the PPP literature,14 we examine the mean-reverting behavior of infla-

tion rates using the panel-unit root framework developed by Levin and Lin (1992)

and Levin and Lin (1993).

Given our sample of inflation rates πi,t (with i = 1, 2, . . . , N denoting the individual

regions of our sample and t = 1, 2, . . . , T representing the time index), the test for

inflation convergence is based on the following equation

∆πi,t = ρπi,t−1 + θt +

ki
∑

j=1

φi,j∆πi,t−j + εi,t, (4)

where ∆ denotes the one-period (annual) change of a variable and θt represents a

common time effect. εi,t is assumed to be a (possibly serially correlated) stationary

idiosyncratic shock. The inclusion of lagged differences in the equation serves to

control for serial correlation. As the subindex of k indicates, we allow the number

of lagged differences to vary across individuals, whereby the respective number is

determined using the top-down approach suggested by Campbell and Perron (1991).

The inclusion of a common time effect is supposed to control for cross-sectional

dependence caused, e.g., by common fiscal policy shocks. To take control of this

effect, we transform the data by subtracting the cross-sectional mean leading to

∆π̃i,t = ρπ̃i,t−1 +

ki
∑

j=1

φi,j∆π̃i,t−j + εi,t, (5)

14See, e.g., Wu (1996), Frankel and Rose (1996) or Goldberg and Verboven (1998) For overview
articles, see Froot and Rogoff (1996) and Rogoff (1996).
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where π̃i,t is computed as

π̃i,t = πi,t −
1

N

N
∑

j=1

πj,t. (6)

To see whether mean-reverting behavior in inflation rates is present, we test - follow-

ing Levin and Lin (1993) - the null hypothesis that all ρi are equal to zero against

the alternative hypothesis that they are all smaller than zero, i.e., we test the null

hypothesis:

H0 : ρ1 = ρ2 = · · · = ρN = ρ = 0,

against its alternative:

H1 : ρ1 = ρ2 = · · · = ρN = ρ < 0.

If we can reject the null hypothesis of nonstationarity, inflation rates exhibit mean

reverting behavior and thus any shock that causes deviations from equilibrium even-

tually dies out. The speed at which this occurs can be directly derived from the

estimated value for ρ (denoted ρ̂). Given ρ̂, half-lives of convergence can be com-

puted using the formula

thalf =
ln (0.5)

ln (ρ̂)
.

Unfortunately, as Nickell (1981) shows, for finite samples the estimates for ρ are bi-

ased downward. To correct for this downward bias, he suggests an adjustment factor

that we also use for our results. Critical values for the test statistics are obtained

using a parametric bootstrap based on 5,000 simulations of the data-generating pro-

cess under the null hypothesis. Additionally, we restrict our discussion in this section

on the European ‘extended sample’, since only for this group are reasonably long

time series available.

Results are presented in table 7. As one can readily see, the null hypothesis of

nonstationarity is clearly rejected. We obtain inflation half-lives of 2.3 years for the

unadjusted coefficient and 17.0 years for the adjusted value. To examine whether

the turbulences in 1992 and 1993 have had any significant influence on the conver-

gence process, we also examined the case when the observations for this period were

excluded. As we expected, the estimated ρ-coefficients drops somewhat in value

with the unadjusted half-life now being 1.6 years and the adjusted half-life having

a value of 5.4 years which is very close to the result we obtained in the last section.

Thus, the results in this section confirm that convergence is present but occurs at a

very modest speed with considerable half-lives. In the next section, we will examine

how overall inflation dispersion has evolved across European regions.

5 σ-Convergence across European regions

In addition to the question of β-convergence in inflation rates, another important

aspect of convergence concerns the evolution of the overall cross-regional disper-

sion of inflation rates. In this section, we will focus on the question of whether
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cross-regional dispersion of European inflation rates has stayed constant over time,

has diminished or has even increased in recent years. In analogy to the expression

‘β-convergence’, the growth literature has used the term ‘σ-convergence’ when de-

creasing overall cross-regional dispersion is observed.15

As we have indicated in the introduction, the question of σ-convergence in regional

inflation rates is of greatest importance for European monetary policy-makers. To

give an example, let us consider the following case: Imagine an economic area where

initially 50% of the regions (in terms of GDP) have an inflation rate of 1% whereas

the other half have an inflation rate of 3%. Then, overall inflation would be 2% and

thus just in line with the ECB’s upper boundary. Imagine now that due to some

asymmetric shocks (such as different spending policies or external shocks that have

asymmetric effects) the inflation spread between the two regional clusters widens

in the sense that now one half of the regions has an inflation rate of 4% and the

other half 0%. Then, average inflation rate would still be 2%. The policy-maker,

however, would face a very problematic situation. On the one hand, half of the

regions would be threatened by deflation and thus would need an expansionary

policy, whereas the other half would require a more contractionary policy. Thus,

from the perspective of the ECB - and certainly also from the perspective of EMU

citizens and firms - it would be desirable for overall inflation dispersion to have a

relatively modest size (and would stay there, of course). More preferable would

be the case of σ-convergence, i.e., a continuous decrease in overall dispersion over

time. As Sala-i Martin (1996b) illustrates, in the presence of σ-convergence, some

steady-state value for cross-sectional dispersion would finally be reached which would

diminish the probability of contradictionary claims on the central monetary author-

ity. In the growth literature, some authors16 have gone so far in their emphasis of

the importance of the concept of σ-convergence that they argue that it is the only

important concept of convergence. We do not follow these arguments but rather

consider the two concepts to be equally interesting and important for the following

reason:17 Assume that dispersion across EMU regions has reached its steady state

and is thus no longer diminishing. Additionally, imagine that β-convergence has

also come to an end. This would mean that any existing inflation gap between two

regions would remain constant forever with the consequence that the price levels of

the two regions would diverge forever leading to an infinitely large (at least theo-

retically) difference in the price level between the two regions. Thus, even if overall

dispersion has reached some acceptable steady state level, β-convergence still seems

to be a desirable feature of cross-regional inflation dynamics.

A useful illustration of the relationship between the two concepts can be derived

as follows, starting with the existence of β-convergence:18 In the presence of β-

15Both of these expression (β- and σ-convergence) were actually introduced by Sala-i Martin
(1990).

16See, e.g., Quah (1993b).
17Compare Sala-i Martin (1996b) and his reference to the U.S. NBA league and the Spanish

soccer league for an analogous line of arguments.
18The following illustration closely follows Sala-i Martin (1996b).
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convergence, there is a negative relationship between changes in inflation rates and

its respective initial values. Based on this relationship, we tested for convergence

using

∆πi,t = α + ρπi,t−1 + ui,t, (7)

which can be rearranged to yield

πi,t = α + (1 − β)πi,t−1 + ui,t, (8)

where 1 − β = ρ − 1 and 0 < β < 1 for the case of convergence. The larger β, the

faster is the convergence.

Defining cross-sectional dispersion as

σ2
t =

1

N

N
∑

i=1

(πi,t − π̄t)
2 (9)

(with π̄t denoting the cross-sectional inflation mean in period t) and assuming that

the sample variance is close to its theoretical equivalent for a sufficiently large value

of N , an expression for the evolution of the cross-sectional dispersion can be derived

as

σ2
t ≈ (1 − β)2 σ2

t−1 + σ2
u. (10)

This equation shows that σ-convergence only occurs when 0 < β < 1,19 i.e., when

β-convergence is present. Thus, as Sala-i Martin (1996b) concludes, ‘β-convergence

is a necessary condition for σ-convergence’. There are two things to observe. First,

even when the first-order difference equation for the evolution of σ is stable (i.e., σ-

convergence occurs), dispersion can increase over time. This happens whenever the

current dispersion is below its steady-state value implied by equation (10). Secondly,

the presence of β-convergence does not necessarily imply σ-convergence, i.e., β-

convergence is not a sufficient condition for σ-convergence. As Sala-i Martin (1996a)

demonstrates, the case of β-convergence but missing σ-convergence will arise when

‘leap-frogging’ occurs to a large extent. As we have illustrated in figure 2, inflation

rates for food indeed exhibit this pattern. In other words, the strong evidence of

β-convergence found in the last two sections does not allow us to conclude that we

will find σ-convergence across European regions.

Figure 6 plots the cross-sectional dispersion of annual inflation rates (total index)

for the European ‘extended sample’. As the graph clearly shows dispersion has con-

siderably decreased in the first half of the 1990s. After 1995, no further decline in

overall dispersion can be observed. On the contrary, dispersion has increased in the

last year of our sample.

To sum up results in this section, our evidence shows that σ-convergence for Euro-

pean regional inflation rates occurred at the first half of the 1990s and came to an end

afterwards. Overall dispersion might already have reached some steady-state value

such that further reductions in dispersion can probably not be expected (but are

19The case when β is negative is excluded.
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not necessary either). β-convergence, i.e., movements within the given dispersion,

however, will probably continue to occur. In the next section, we will study how the

composition of European overall inflation distribution has evolved over time.

6 Distribution Dynamics

In the last section, we examined the evolution of the cross-regional inflation distribu-

tion by computing and analyzing standard deviations. Whilst this approach allowed

us to draw interesting conclusions about the evolution of the size of overall inflation

dispersion, it does not allow us to say anything about the evolution of the shape

of the distribution and about the within-distribution dynamics. An interesting and

important issue that could not be addressed using this ‘second-moment-approach’ is

the dynamics of the composition of the left and right tails of the distribution: Does

the composition remain relatively constant, i.e., do regions with relatively low/high

inflation rates stay in this position for a prolonged period of time, or is the compo-

sition changing rapidly, i.e., do regions with relatively low/high inflation rates move

away from the tail into the middle of the distribution relatively fast. As is clear,

the second case is the preferred one from the perspective of any central banker as it

avoids problems associated with diverging price levels across regions.

A first answer to this important question can be indirectly derived using our results

on β-convergence. Given the evidence of strong β-convergence and relative constant

overall dispersion, we can conclude that there is significant within-distribution dy-

namics. In this section, we want to take a closer look at this issue. To do so, we

refer to an econometric methodology called distribution dynamics. Thus far, this

methodology has been mostly applied in the economic growth literature,20 where it

has been used to study the dynamics of per capita income distribution. The idea

behind distribution dynamics is to find a law of motion that describes the evolution

of the entire considered distribution over time. Following the growth literature, we

use a Markov processes to describe the dynamics of the cross-regional inflation dis-

tribution in period t, Ft. In analogy to the time-series literature, the dynamics of

the cross-regional inflation distribution can be modelled as an AR(1) process in the

following way:21

Ft+1 = T ? (Ft) , (11)

where T ?(.) denotes the operator mapping period’s t distribution into period’s t + 1

distribution. Depending on the nature of the underlying variable of interest Xt,

this operator is either interpreted as the transition function/stochastic kernel of a

continuous state-space Markov process or as the transition probability matrix of a

20See Bianchi (1997), Hobijn and Franses (2001), Quah (1993a), Quah (1993b), Quah (1994),
Quah (1996) or Quah (1997) amongst others. For a recent survey, see Durlauf and Quah (1999).

21The following exposition is a condensed representation of the methodology of distribution
dynamics. A more technical exposition can be found in Quah (1997) or in the appendix of
Durlauf and Quah (1999).
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discrete state-space Markov process. In the former case, equation (11) translates to

Ft+1 =

∫

A

P (x,A)Ft(dy). (12)

Here, A is any subset of the underlying state space for Xt and P (x,A) denotes the

stochastic kernel that describes the probability that we will be in A in t + 1 given

that we are currently in state x, i.e.,

P (x,A) = P (Xt+1 ∈ A|Xt = x). (13)

In the following analysis, we define the variable of interest Xt to be the deviation of

a region’s inflation rate from the cross-regional mean, the underlying state space is

the real line R.

We also consider the discretized case. A discrete-case consideration has the advan-

tage that it provides us with easily interpretable (discrete) probability distributions

and transition probability matrices. The major drawback of this approach is, that

any discretization will be more or less arbitrary. In light of the practical usefulness

that concrete numbers for transition probabilities have for monetary policy-makers

we think that the benefits of the discretization will outweigh its costs.22 For the

discrete state-space case, equation (11) becomes

Ft+1 = MFt, (14)

where M is an nxn transition probability matrix with n denoting the number of

distinct states and row entries summing up to 1.

For the European ‘extended sample’, results for the continuous case are depicted

in figures 7 and 8. Figure 7 represents the surface plot of the stochastic kernel

for annual inflation rate transitions for the period of 1992 to 2004. On the x-axis

(denoted by t), we plot the period’s t inflation deviations from the cross-regional

mean and on the y-axis (denoted by t+1), we plot period’s t+1 inflation deviations

from the cross-regional mean. On the z-axis, we plot the conditional transition

density function p(x, y) associated with the stochastic kernel P (x,A) that has the

property that

P (x,A) =

∫

A

p(x, y)dy, (15)

22Another problem of discretization is that it can remove the Markov property (see, e.g.,
Guihenneuc-Jouyaux and Robert (1998)). The results of Bulli (2000), who tries to evaluate the
practical consequences of arbitrary discretizations, show that a regenerative discretization instead
of our ‘naive’ discretization would probably not change our main results dramatically but would
probably lead to even more pronounced results.
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with y denoting elements in A.23 If the probability mass was concentrated along the

diagonal of the x-y plain, then any existing deviations from the cross-regional infla-

tion mean in period t would be expected to remain basically unchanged over time.

If on the other hand most of the probability mass in the graph was concentrated

around the 0-value of the period-t + 1-axis - extending parallel to the period-t-axis

- then the period’s t deviations would be basically expected to vanish until the next

period. A look at figure 7 shows that the ‘true’ dynamic lies in between these two

extremes. The probability mass is rotated clockwise by about 10◦ to 20◦. This

means, that regions with relatively low/high inflation rates in period t are expected

to move back towards the mean at a one-year horizon. However, not all of the ini-

tial deviation is expected to vanish within this time horizon. This finding basically

confirms our results from sections 3 and 4 where we found strong evidence in favor

of β-convergence, though with considerable half-lives. An even clearer illustration of

the outlined distribution dynamics is given in figure 8 where we present the contour

plot of the transition density function (left panel) and show how the period’s t + 1

conditional expected deviation of inflation rates behaves relatively to the period’s

t deviation (right panel). The plot for the conditional expected inflation deviation

shows that deviations are expected to decrease. So, when the period’s t deviation

is −2%, then the period’s t + 1 expected deviation is only around −0.9 and thus

considerably lower (in absolute values). The contour plot shows that there is a

considerable dispersion around this conditional expected value. Thus, whereas on

average deviations are expected to decline, there is also a non-negligible probability

that deviations will not change. On the other hand, it can happen that deviations

will reduce drastically.

To get some numbers for transition probabilities across the inflation states at hand,

we discretized the continuous state-space into five ranges with an approximately

equal number of period t observations in each state. The results are presented in

the upper panel of table 8. In the first column, the period’s t states are reported.

Columns two to six report conditional probabilities for the transition from the re-

spective period’s t state to period’s t + 1 state. Row entries sum up - apart from

deviations caused by rounding - to one. Comparing diagonal with off-diagonal ele-

ments, we see that for each state the conditional probability of staying in the current

state is generally highest. However, unlike in the growth literature, off-diagonal en-

tries are important, summing up to 0.4 or even more. In other words, the conditional

probability of a change in period’s t state is 40% or higher. Particularly interesting

are the findings for the ‘extreme’ states, i.e., states that are defined by large negative

or large positive period’s t mean deviations. A region whose inflation rate is more

than 0.7% below or above average in period t is expected to have a deviation of

similar size with a probability of about 0.54, or, in other words, is expected to have

23When A is identical to the underlying state space (R), the transition density function integrates
to one, of course, i.e.,

P (x,A) =

Z

R

p(x, y)dy. (16)
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a lower deviation (in absolute terms) with a 54% probability. These numbers are

noteworthy for a simple reason: If conditional probabilities of remaining into one of

these extreme states were close to one, then any region that slipped into deflation

when EMU average inflation rates approached very low values (and stayed there for

some time) would have negative inflation rates for quite some time. If on the other

hand, these probabilities were close to zero, then a low EMU average inflation rate

would be of less concern for the ECB, as one could expect that any one particular re-

gion would not be affected by negative inflation rates for a long time. The reported

figures in table 8 lie in between these two scenarios: They tell us that there is a

significant dynamic back towards the mean when extreme deviations are reached,

but the speed at which this occurs is modest.

The lower panel of table 8 reports some descriptive statistics on how the inflation

ranking is changing over time within the given distribution. The table entries repre-

sent conditional probabilities for switching between quintiles of the overall distribu-

tion. The figures show that there are considerable dynamics within the distribution

which is not surprising given our evidence in favor of β-convergence. From an eco-

nomic point of view, this result is positive in the sense that any existing inflationary

gap between regions can be expected to disappear in the long-run such that no

dramatically diverging price level dynamics are to be feared. The question that we

want to address in the next section is whether we can use the large cross-regional

dimension of our data to create some device that the ECB can use when deciding

on the appropriate monetary policy for the .

7 Mean Inflation and Cross-Regional Inflation Disper-

sion

As outlined in the introduction, the ECB has been criticized that its inflation target

of an EMU-wide average inflation rate of less than (but close to) 2% is too low. Due

to considerable regional inflation dispersion, it is argued, an inflation rate under 2%

induces considerable deflationary risks for low-inflation countries such as Germany.

As we already discussed and as figure 1 clearly shows, this argument is true at least

insofar as there is considerable dispersion around the average inflation rate. The

band that is generated by this dispersion has a width of around 4%. However, as we

will show below, the band width is not constant over time and crucially depends on

the size of the prevailing average inflation rate. Under these circumstances, critics of

the ECB’s inflation target are only right, when for EMU-wide inflation rates below

2% a significant proportion of regions face deflation at the then prevailing disper-

sion. In this section, we will show that our regional inflation data can be used to

compute some form of ‘critical’ values for EMU-mean inflation that indicate when

certain proportions of regions are facing negative inflation rates. The computation is

done by approximating a theoretical distribution function to the observed empirical

dispersion. As it turns out, a normal distribution fits the data sufficiently well such
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that only the empirical mean and variance is needed to describe our data. However,

to adequately represent actual inflation dispersion by its theoretical equivalent, the

described link between mean inflation and inflation dispersion has to be taken into

account. Otherwise, conclusions would be flawed as we will show below.

Similar to our finding of a significant positive relationship between a country’s aver-

age inflation rate and regional inflation dispersion, a large branch of literature has

empirically examined an analogous relationship between a country’s inflation rate

and its cross-sectional dispersion.24 Theoretical models that try to explain this link

can be mainly classified into two groups: menu-cost models (Sheshinski and Weiss

(1977), Rotemberg (1983) and others) and signal extraction models (Lucas (1973),

Barro (1976) and Hercowitz (1981)). Our results show that this relationship also

has a regional dimension. It is easily conceivable that some of the mechanisms re-

sponsible for the link between the level of inflation and its variability across sectors

generate a similar relationship between a country’s average inflation rate and the

cross-regional dispersion. Imagine, e.g., that price adjustments are costly. Then

local suppliers will adjust their prices not continuously but in steps, with the step

size positively depending on the level of average inflation. If price adjustment costs

differ across regions or if there are region-specific shocks, staggered price setting

across regions will occur and thus higher inflation will increase inflation dispersion

across regions.

To determine ‘critical’ mean inflation values, we start by finding an appropriate

theoretical approximation for the empirical inflation distribution. As already men-

tioned, a normal distribution seems to be a good candidate. The necessary first and

second moments are computed by weighting each region’s inflation rate by its re-

spective share in total GDP.25 In figure 10, we compare the kernel density estimate

of the empirical inflation distribution (January 1992) with its theoretical normal

approximation. As one can see, the fit is relatively good. Empirical statistics also

indicate the appropriateness of our choice: The average skewness of all periods’ in-

flation dispersions is -0.69 with a standard error of 0.72, i.e., it is not significantly

different from zero. The average kurtosis is 3.3 (standard error: 2.0) and is thus

only slightly different from 3.0. Thus, we conclude that a normal distribution fits

our data sufficiently well and we can use the cumulative normal density function

to examine more closely the link between average inflation and the proportion of

regions facing deflation.

Before, however, we need to find a device to guarantee that the relationship between

the mean inflation rate and its dispersion is observed. We do that by establishing a

functional relationship between the two variables using estimation techniques (OLS).

A graphical illustration of this relationship is given in figure 9. This graph clearly

demonstrates the discussed positive link. Regressing the standard deviation of re-

24See, e.g., Parks (1978), Fischer (1981) and Taylor (1981).
25To compute weights, we are using national per capita GDP data from the OECD (2001 data).

Weights are obtained by dividing the product of national per capita GDP data with a region’s
total population (obtained from http://www.population.de) by total GDP. Higher moments are
computed using the same weights.
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gional inflation rates in period t (denoted by σt) on the weighted average inflation

rate (denoted by µt) delivers:26

σt = −0.00002
(0.00001)

+ 0.0044
(0.0004)

µt + εt (17)

R2
adj = 0.47

Not surprisingly, the result shows that there is a statistically significant positive re-

lationship between inflation mean and dispersion. One important implication of this

finding is that dispersion decreases considerably when average inflation decreases.

Thus, it would be incorrect if one used the dispersion prevailing say at 2% to predict

the proportion of regions in deflation for mean inflation rates below 2%. Such a con-

clusion would considerably overestimate this proportion. This will be illustrated in

the following when we compute proportions of ‘deflationary’ regions in dependence

of prevailing mean inflation rates for different ‘dispersion scenarios’. As a starting

point we use the approximated distribution to compute ‘critical’ values for mean

inflation rates. These ‘critical’ values are obtained by determining these mean infla-

tion rates for which 1%, 2.5%, 5%, 10% and 25% of all regions face deflation. The

computations are based on

Φ

(

π − µcrit

σ(µcrit)

)

= pcrit, (18)

where Φ(.) denotes the cumulative density function of the normal distribution, pcrit

is the proportion of regions with deflation and µcrit is the respective corresponding

mean inflation rate. The expression σ(µ) indicates the dependence of the dispersion

from the prevailing mean inflation rate. To determine the desired critical values for

µ, we set π equal to zero and solve the above term for µcrit using the result from

equation (17). This results in:

µcrit = −
−0.00002Φ−1(pcrit)

1 + 0.0044Φ−1(pcrit)
. (19)

To demonstrate the importance of taking into account the changes in dispersion

in response to changes in the mean, we compute analogous critical values for the

case when we take inflation dispersion computed at 2% (the ECB’s upper inflation

bound) and 2.5% (the highest average annual rate since the introduction of the

euro). The results are presented in the upper panel of table 9. Looking at the sec-

ond column (where ‘dispersion-adjustment’ is taken into account), it becomes clear

that only for relatively small mean inflation rates a considerable proportion of our

sample regions face deflation. So, when average inflation is as low as 1.20%, only 5%

of all regions have an inflation rate below zero. On the other hand, columns three

and four (where critical values are computed based on the dispersion prevailing at

an average inflation of 2% and 2.5%) clearly show that ‘critical’ values for the mean

26Numbers in brackets denote standard errors.

17



inflation rate strongly increase when the adjustment in dispersion (corresponding

to a decrease in the mean inflation rate) is not taken into account. The 5%-critical

value, e.g., increases from 1.20% to 1.54%, i.e., almost a half percentage point, when

it is computed on the basis of the dispersion that prevails at an average inflation

rate of 2.5%.

To get a better idea of how fast the proportion of deflationary regions increases

with decreasing mean inflation, the lower panel of table 9 reports the percentage of

regions with deflation for mean inflation rate between 0.5% and 2.0%. As column

two (adjusted case) shows, for mean inflation rates larger than 1% the proportion

of deflationary regions is negligibly small. On the other hand, it increases dramat-

ically with any further reduction below 1%. Columns three and four show that for

dispersions prevailing at 2% and 2.5%, mean inflation rates of even 1.5% are already

associated with a considerable proportion of deflationary regions. This shows that

if dispersion stayed constant at the levels prevailing at higher mean inflation rates,

the ECB’s inflation target would probably be too low, as it would force the ECB

to keep inflation rates in the narrow band between 1.5% and 2%. In face of an

uncertain world where large and mostly unanticipated demand as well as supply

shocks can occur, this would seem to be an almost impossible task. On the other

hand, since mean and dispersion are moving together, the tolerable inflation range

increases by about 0.5% reaching from 1% to 2% which is still fairly narrow but

manageable. This view is enforced by the findings of the previous section where

we showed that there are considerable within-distribution dynamics. Thus, when

the average inflation rate reaches a certain ‘critical’ value and stays there for some

time, it is very unlikely that the same regions that are initially affected by nega-

tive inflation rates will remain so throughout the time that the overall inflation rate

stays low. As we described above, it is more likely that regions that are the first to

be affected by negative inflation rates will ‘revert’ to the cross-regional mean after

some time whilst other regions’ inflation rates will fall below zero. Thus, the within-

distribution dynamics will ease pressure on monetary authorities and increase their

scope for conducting monetary policy.

8 Conclusions

The purpose of this paper was to study the nature of cross-regional inflation disper-

sion in EMU countries. We examined the dynamics of individual regions’ inflation

rates (β-convergence), the evolution of overall inflation dispersion (σ-convergence)

and provided an approach that is useful for assessing which mean inflation rates are

sustainable in face of the prevailing regional inflation dispersion. Using two different

methodologies, we are able to confirm that inflation rates of individual regions ex-

hibit significant mean reverting behavior. Or, in the NBA/soccer-league picture of

Sala-i Martin (1996a): A region with a high inflation rank today will probably not

have a high inflation rank in the future. Thus, monetary authorities do not have to
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be too worried about individual regions with temporarily high inflation rates. The

convergence process itself seems to be nonlinear in the sense that its speed seems to

decrease the further it proceeds. As we also showed, ‘leapfrogging’ is present and

has interesting implications for monetary authorities: First, it can lead to mislead-

ing conclusions with respect to the dynamics of the total-index-inflation rate when

it happens in subcategories. Secondly, in its presence, σ-convergence does not nec-

essarily happen even if strong β-convergence exists. This can particularly be seen

for the second half of the 1990s where we find strong β-convergence for all groups

of goods but no further reduction in overall dispersion. While exhibiting relative

constancy after 1996, we show that overall dispersion has significantly reduced in

the first half of the 1990s. The finding of a relatively stable cross-regional dispersion

from 1996 on can be seen as some evidence that dispersion has reached a steady

state. Moreover, a comparison of absolute figures between the three samples indi-

cates the sustainability of this dispersion level.

Arguments for the feasibility of the ECB’s inflation target are delivered in our last

section where we approximated the prevailing empirical inflation dispersion by a

theoretical distribution to show that only at mean inflation rates below 1% a signifi-

cant portion of regions face deflation. One shortcoming of this result is that the lack

of high-inflation countries like Ireland or Greece might downward-bias our results.

On the other hand, these countries only have a small weight in the computationof

mean inflation rates. Additionally, their missing might well be compensated by the

lack of other lower inflation countries like France, Luxembourg or Denmark.

Overall, the results of our analysis represent mostly good news for the ECB, but

some caveats still apply. The goods news is that

• regional inflation rates in Europe do not drift apart but tend to mean-revert,

• there are considerable with-distribution dynamics leading any region in the

lower or upper tail of the cross-regional inflation distribution to move back

towards the mean after some time,

• overall dispersion has reached a presumably sustainable level and

• the chosen inflation target does not excessively restrict the ECB’s policy scope

and seems to be compatible with the prevailing cross-regional dispersion.

On the other hand, it is important to realize that convergence seems to occur only

at a relatively modest rate. Additionally and more importantly, the ECB should

definitely try hard not to let aggregate inflation fall below one percent as in this

case the proportion of regions facing deflation will grow dramatically with any small

further reduction. Therefore, following Bernanke (2002), we strongly recommend a

buffer zone of at least 1% below which the ECB should not try to push inflation.

Further research, both in empirical and particularly in theoretical respect, is needed

to better understand the sources for regional inflation dispersion such that monetary

authorities can better respond to it.
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9 Tables

Table 1: Countries and Regions/Cities Included in Our Study

Germany (7 regions)

Berlin, Nordrhein-Westfalen, Niedersachsen, Bayern, Saarland, Baden-Wuerttemberg,
Hessen

Austria (20 cities)

Amstetten, Baden, Bregenz, Dornbirn, Eisenstadt, Feldkirchen, Graz, Innsbruck, Kapfen-
berg, Klagenfurt, Krems, Linz, Salzburg, Steyr, St. Poelten, Villach, Wels, Wien, Wiener
Neustadt, Wolfsberg

Finland (5 regions)

Uusimaa, Southern Finland, Eastern Finland, Mid-Finland, Northern Finland

Italy (20 cities)

Ancona, Aosta, Bari, Bologna, Cagliari, Campobas, Firenze, Genova, L’Aquila, Milano,
Napoli, Palermo, Perugia, Potenza, Reggio Calabria, Roma, Torino, Trento, Trieste, Venezia

Spain (18 provinces)

Castilla la Mancha, Extremadura, Cataluna, Ceuta et Melilla, Galicia, Canarias, La Rioja,
Madrid, Murcia, Asturias, Baleares, Navarra, Pais Vasco, Cantabria, Aragon, Andalucia,
Valencia, Castilla Leon

Portugal (7 regions)

Centro, Alentejo, Algarve, Madeira, Lisboa e Vale Tejo (LVT), Acores, Norte
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Table 2: Description of Samples

Countries Range Categories

European ‘Core Sample’

Germany (germ), Austria
(aust), Finland (finl), Italy
(ital), Spain (spai), Portugal
(port)

95.01-04.10:

germ, aust (allit), finl, ital (allit),
spai and port;
96.01-04.10:

ital (subcategories)

All items +
11 COICOP
subcategories

European ‘Extended Sample’

Germany (germ), Austria
(aust), Italy (ital), Spain
(spai), Portugal (port)

91.01-04.10: All items

Notes:

1) The COICOP subcategories are: food and non-alcoholic beverages (food); alcoholic beverages
and tobacco (alco); clothing and footwear (clot); housing, water electricity, gas and other fuels
(hous); furnishings, household equipment and routine maintenance of the house (furn); health
(heal); transport (tran); communications (comm); recreation and culture (recr); education (educ);
hotels, cafes and restaurants (hote).
2) For Germany, alco and educ are missing for Saarland; for Portugal, educ is excluded.
3) Terms in brackets denote the short names that are used for the respective country or subcategory.
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Table 3: Some Descriptive Statistics for our European ‘Core Sample’

Category germ aust finl ital spai port all

allit mean 1.41 1.60 1.44 2.42 2.87 2.93 2.00
std.dvt. 0.0012 0.0010 0.0009 0.0022 0.0020 0.0010 0.0071

food mean 0.64 - 1.58 2.03 2.71 2.50 1.51
std.dvt. 0.0027 - 0.0032 0.0045 0.0025 0.0022 0.0099

alco mean 2.88 - 0.30 3.75 5.04 3.92 3.53
std.dvt. 0.0007 - 0.0006 0.0010 0.0033 0.0045 0.0118

clot mean 1.12 - -0.16 2.55 2.63 0.58 1.58
std.dvt. 0.0216 - 0.0056 0.0054 0.0063 0.0085 0.0183

hous mean 1.85 - 2.04 2.90 2.85 3.11 2.31
std.dvt. 0.0017 - 0.0023 0.0038 0.0029 0.0033 0.0057

furn mean 0.48 - 0.90 1.63 2.06 2.36 1.16
std.dvt. 0.0018 - 0.0019 0.0033 0.0042 0.0041 0.0082

heal mean 3.09 - 3.02 2.16 2.18 3.49 2.78
std.dvt. 0.0012 - 0.0025 0.0048 0.0043 0.0032 0.0056

tran mean 2.40 - 1.44 2.27 2.45 3.68 2.45
std.dvt. 0.0010 - 0.0016 0.0032 0.0017 0.0016 0.0041

comm mean -3.46 - -1.16 -1.89 -1.13 -2.05 -2.47
std.dvt. 0.0052 - 0.0111 0.0040 0.0015 0.0038 0.0117

recr mean 0.40 - 1.68 1.70 1.99 1.37 1.08
std.dvt. 0.0020 - 0.0013 0.0018 0.0048 0.0025 0.0079

educ mean 2.52 - 4.12 2.64 4.34 7.62 3.46
std.dvt. 0.0115 - 0.0005 0.0093 0.0045 0.0065 0.0165

hote mean 1.56 - 2.51 3.04 4.08 3.98 2.60
std.dvt. 0.0027 - 0.0009 0.0060 0.0026 0.0037 0.0120

Notes:

1) The short names used for the COICOP subcategories are explained in table 2.

2) The mean inflation rate (mean) is computed as the cross-sectional mean of all regional mean

inflation rates (geometric mean) included in the respective sample. The computation of the standard

deviation is likewise based on the cross-section of the geometric means of all regional mean inflation

rates included in the respective sample.

3) Standard deviations are multiplied by 10,000.
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Table 4: Cross-Sectional Evidence of Inflation Convergence (β-convergence): Euro-
pean ‘Core Sample’, Total Period

Category b̂ t − stat R2
adj half-life

Baseline Regressions

allit -0.077 -8.40 0.61 5.5
food -0.241 -8.05 0.56 -
alco -0.138 -5.90 0.31 1.4
clot -0.087 -3.69 0.25 4.9
hous -0.124 -8.32 0.52 2.2
furn -0.060 -3.13 0.18 8.7
heal 0.119 1.99 0.11 -
tran -0.085 -3.67 0.23 5.1
comm -0.333 -11.28 0.60 -
recr -0.210 -16.40 0.75 -
educ -0.100 -2.38 0.22 3.8
hote -0.081 -3.92 0.20 5.5

Notes:

1) The short names used for the COICOP categories are explained in table 2.
2) Estimation results are based on the equation

1

T
∆(πi,t0+T ) = constant + β ∗ πi,t0 + εi,t0,t0+T .

Here, T denotes the length of the sample period in years, π denotes the inflation rate computed as
an average annual rate and t0 denotes the initial period. Estimation results were obtained using
OLS.
3) The figures for the half-lives are computed by solving the equation

b̂ = −

„

1 − e−β∗T

T

«

for β, see Barro and Sala-i Martin (1992). Where the nonlinear solution algorithm produced com-

plex numbers, results for half-lives are not reported.

4) T-Statistics are computed using White (1980) heteroscedasticity-consistent standard errors.
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Table 5: Cross-Sectional Evidence of Inflation Convergence (β-convergence) across
European Regions: ‘Core Sample’, Pre-EMU and EMU Subperiod

Category b̂ t − stat R2
adj half-live

1996.01-1998.12

allit -0.365 -12.78 0.68 0.7
food -0.968 -7.79 0.38 0.1
alco -0.614 -6.66 0.46 0.2
clot -0.009 -0.06 -0.02 75.1
hous -0.444 -2.12 0.13 0.8
furn -0.629 -4.41 0.29 0.1
heal -0.280 -1.64 0.11 1.7
tran -1.238 -7.67 0.55 0.0
comm -0.519 -5.50 0.13 0.5
recr -0.629 -3.43 0.31 0.1
educ -0.508 -3.37 0.31 0.6
hote -0.531 -4.03 0.29 0.5

1999.01-2004.10

allit -0.033 -1.50 0.01 19.6
food -0.210 -3.70 0.27 1.8
alco -0.158 -5.42 0.39 2.9
clot -0.067 -0.68 0.00 9.0
hous -0.316 -5.83 0.39 0.3
furn -0.181 -4.28 0.20 2.3
heal -0.258 -5.68 0.56 1.1
tran -0.293 -2.07 0.18 0.6
comm -0.386 -15.96 0.90 0.1
recr -0.240 -7.03 0.37 1.3
educ -0.295 -9.37 0.78 0.6
hote -0.162 -3.94 0.19 2.8

Notes:

1) The short names used for the COICOP categories are explained in table 2.
2) Estimation results are based on the equation

1

T
∆(πi,t0+T ) = constant + β ∗ πi,t0 + εi,t0,t0+T .

Here, T denotes the length of the sample period in years, π denotes the inflation rate computed as
an average annual rate and t0 denotes the initial period. Estimation results were obtained using
OLS.
3) The figures for the half-lives are computed solving the equation

b̂ = −

„

1 − e−β∗T

T

«

for β, see Barro and Sala-i Martin (1992). Where the nonlinear solution algorithm produced com-

plex numbers, results for half-lives are not reported.

4) T-Statistics are computed using White (1980) heteroscedasticity-consistent standard errors.



Table 6: Cross-Sectional Evidence of Inflation Convergence (β-convergence) across
European Regions: European ‘Extended Sample’

Category b̂ t − stat R2
adj half-life

‘Extended Sample’

1992.01-2002.12 -0.071 -23.94 0.88 4.2
1992.01-1994.12 -0.271 -10.77 0.62 1.4
1995.01-1998.12 -0.236 -20.93 0.81 1.3
1999.01-2002.12 -0.042 -1.99 0.02 15.2

Notes:

1) Estimation results are based on the equation

1

T
∆(πi,t0+T ) = constant + β ∗ πi,t0 + εi,t0,t0+T .

Here, T denotes the length of the sample period in years, π denotes the inflation rate computed as
an average annual rate and t0 denotes the initial period. Estimation results were obtained using
OLS.
2) The figures for the half-lives are computed solving the equation

b̂ = −

„

1 − e−β∗T

T

«

for β, see Barro and Sala-i Martin (1992). Where the nonlinear solution algorithm produced com-

plex numbers, results for half-lives are not reported.

3) The European ‘extended sample’ includes Germany, Austria, Italy, Spain, and Portugal (for more

details, see table 2).

4) T-Statistics are computed using White (1980) heteroscedasticity-consistent standard errors.
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Table 7: Panel Unit Root Tests (Levin and Lin (1993)) of Inflation Convergence:
European ‘Extended Sample’

Sample ρ ρadj t − stat p-value half-live half-live (adj.)

Eur.Ext.Sample:
1992-2002

0.74 0.96 -9.61 0.012 2.3 17.0

Eur.Ext.Sample:
1994-2002

0.64 0.88 -14.63 0.001 1.6 5.4

Notes:

1) The European ‘extended sample’ includes German, Austrian, Italian, Spanish and Portuguese
regions, see table 2 for details.
2) Results are based on the equation:

∆π̃i,t = ρπ̃i,t−1 +

ki
X

j=1

φi,j∆π̃i,t−j + εi,t,

where π̃i,t denotes the deviation of region’s i inflation rate from the cross-sectional mean. A detailed

description of the estimation procedure is given in section A.

3) Bias adjustment is done using the formula given by Nickell (1981).
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Table 8: Transition Probabilities (Annual Transitions) for the European ‘Extended
Sample’, Deviations the from Cross-Regional Mean and Quantiles

Transition Probabilities for Deviations from Cross-Reg. Mean

Dev. in t Dev. in t + 1

< −0.70 −0.20 0.20 0.70 > 0.70

< −0.7 0.61 0.25 0.11 0.02 0.01
−0.2 0.34 0.35 0.17 0.06 0.09
0.2 0.05 0.3 0.23 0.25 0.17
0.7 0.03 0.1 0.19 0.34 0.34
> 0.7 0.01 0.04 0.11 0.3 0.54

Transition Probabilities for Quintiles

Quint. in t Quint. in t + 1

0.20 0.40 0.60 0.80 1.00

0.2 0.51 0.31 0.14 0.03 0.01
0.4 0.31 0.41 0.17 0.09 0.03
0.6 0.11 0.21 0.27 0.24 0.16
0.8 0.03 0.07 0.24 0.39 0.27
1.0 0.02 0.04 0.15 0.29 0.5

Notes:

1) Table entries report conditional probabilities for the event that an observation which is in period

t in the state indicated in column one moves to one of the states indicated in columns two to six in

period t + 1. The variable under consideration is the deviation of a certain region’s inflation rate

from the cross-sectional mean of inflation rates. Each state includes all inflation rate deviations

that lie within the indicated range. The state −0.20, e.g., comprises all inflation rate deviations

that lie in the range [−0.70,−0.20[. States were chosen such that each state has approximately the

same number of observations.

2) Table entries in the lower panel report conditional probabilities for a region’s inflation rate to

transit from the quintile of the sample distribution indicated in the first column to the quintile

indicated in columns two to six. 0.2, e.g., indicates the first quintile of the distribution.

27



Table 9: Relationship between the Average Inflation Rate and Proportion of Regions
Facing Negative Inflation Rates, European ‘Extended Sample’

‘Critical’ Average Inflation Rates

Prop. of ‘Defl.’ European Sample
Regions ‘disp.-adj.’ no ‘disp.-adj.’

1% 1.99 1.99 2.18
2.5% 1.53 1.68 1.83
5% 1.2 1.41 1.54
10% 0.87 1.1 1.2
25% 0.41 0.58 0.63

Mean Inflation Rate and Percentage of Regions with Deflation

Mean Infl. Rate Prop. of ‘Deflationary’ Regions
‘disp.-adj.’ no ‘disp.-adj.’

2 0.98 0.98 1.63
1.9 1.19 1.33 2.11
1.8 1.45 1.78 2.72
1.7 1.78 2.36 3.46
1.6 2.18 3.09 4.36
1.5 2.68 3.99 5.44
1.4 3.3 5.11 6.73
1.3 4.07 6.45 8.23
1.2 5.01 8.06 9.98
1.1 6.17 9.95 11.98
1 7.61 12.15 14.26
0.9 9.36 14.67 16.8
0.8 11.51 17.51 19.62
0.7 14.11 20.69 22.72
0.6 17.24 24.18 26.07
0.5 20.97 27.97 29.65
0.4 25.37 32.02 33.45
0.3 30.48 36.31 37.42
0.2 36.33 40.77 41.54
0.1 42.86 45.35 45.74
0 50 50 50

Notes:

1) The European ‘extended sample’ includes German, Austrian, Italian, Spanish and Portuguese
regions, see table 2 for details.
2) Mean inflation rates (Mean Infl. Rate) are computed by weighting each regional inflation rate,
πi,t, with the respective region’s share in total GDP, i.e.,

π̂t =
N

X

i=1

γiπi,t.

γi represents the share of region’s i GDP (denoted as GDPi) in total GDP (given by the sum over

all GDPi). γi is thus computed as γi = GDPi
P

N

i=1
GDPi

.

3) ‘Disp.-adj.’ (dispersion adjustment) refers to the case where the positive relationship between the

prevailing mean inflation rate and its dispersion is being taken into account in the computations.

‘No disp.-adj.’ refers to the cases, when either inflation dispersion computed at an average rate

of 2% (the ECB’s upper inflation bound) or 2.5% (the highest average annual inflation rate since

introduction of the Euro) is taken for the computations.



10 Figures

Figure 1: Regional European Inflation Rates: All Items, Emphasis on Italian Regions

Note: Figure 1 plots cross-sectional inflation rates (‘All Items’) for Germany, Austria, Fin-

land, Italy, Spain and Portugal. Inflation rates are computed as annual percentage changes

in the underlying price index. Inflation rates of Italian regions are emphasized.

Figure 2: Regional European Inflation Rates: Food, Emphasis on German Regions

Note: Figure 2 plots cross-sectional inflation rates (COICOP subcategory ‘Food and Non-

Alcoholic Beverages’) for Germany, Finland, Italy, Spain and Portugal. Inflation rates are

computed as annual percentage changes in the underlying price index. Food-inflation rates

of German regions are emphasized.
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Figure 3: Change in Inflation vs. Initial Inflation: All Items, Total Period

Note: Figure 3 plots average annual changes in inflation rates (‘All Items’) between 1996

and 2002 for Germany, Austria, Finland, Italy, Spain and Portugal versus their initial

inflation rates in 1996. Inflation rates are computed as annual percentage changes in the

underlying price index. The dotted line plots fitted values from a OLS regression.

Figure 4: Change in Inflation vs. Initial Inflation: Clothing and Footwear, Total
Period

Note: Figure 4 plots average annual changes in inflation rates (‘Clothing and Footwear’) be-

tween 1997 and 2002 for Germany, Austria, Finland, Italy, Spain and Portugal versus their

initial inflation rates in 1997. Inflation rates are computed as annual percentage changes in

the underlying price index. The dotted line plots fitted values from a OLS regression.
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Figure 5: Change in Inflation vs. Initial Inflation: Food, Total Period

Note: Figure 5 plots average annual changes in inflation rates (‘Food and Non-Alcoholic

Beverages’) between 1997 and 2002 for Germany, Austria, Finland, Italy, Spain and Por-

tugal versus their initial inflation rates in 1997. Inflation rates are computed as annual

percentage changes in the underlying price index. The dotted line plots fitted values from a

OLS regression.

Figure 6: Cross-Regional Inflation Rate Dispersion: European ‘Extended Sample’

Note: Figure 6 plots the standard deviation of the regional inflation rates (total index)

of our European ‘extended sample’ (Germany, Austria, Italy, Spain and Portugal) for the

period from 1992 to 2002. Inflation rates are computed as annual percentage changes in the

underlying price index. All figures are multiplied by 100.
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Figure 7: Surface Plot of the Estimated Stochastic Kernel for Regional Mean-
Inflation Rate Deviations, European ‘Extended Sample’, Annual Transitions

Note: Figure 7 represents the surface plot of the estimated stochastic kernel for cross-

sectional mean inflation rate deviations of the regions included in the European ‘extended

sample’ over the period 1983 to 2002. On the x-axis (denoted by t), period’s t inflation

rate deviations from the cross-regional mean and on the y-axis (denoted by t + 1), period’s

t + 1 inflation rate deviations from the cross-regional mean are plotted. On the z-axis, the

transition density function p(x, y) associated with the stochastic kernel P (x, A) is plotted.

Figure 8: Contour Plot of the Estimated Stochastic Kernel and Conditional Ex-
pected Next Period’s Mean for Regional Mean-Inflation Rate Deviations, European
‘Extended Sample’

Note: The left panel of figure 8 represents the contour plot of the transition density function

p(x, y) associated with the stochastic kernel P (x, A) that we computed for the European

‘extended sample’ (see figure 7). The right panel of figure 8 plots expected period’s t + 1

mean-inflation rate deviations conditional on period’s t mean-inflation rate deviations.
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Figure 9: Cross-Regional Inflation Mean and Dispersion

Note: Figure 9 plots the standard deviations of regional inflation rates against their means

for the period 1992.01 - 2004.10. Included countries are Germany, Austria, Italy, Spain and

Portugal. Individual inflation rates are weighted by the respective region’s weight in total

GDP.
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Figure 10: Regional Inflation Dispersion: Empirical Density Estimate and Theore-
tical Approximation

Note: Figure 10 plots the kernel density estimate of the empirical distribution of regional

inflation rates of our European ‘extended sample’ versus the density from a normal distri-

bution that is used as an approximation. The empirical distribution is that prevailing in

January 2000.
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A Levin-Lin Panel Unit Root Test

A.1 The Test Procedure

To obtain the Levin-Lin panel-unit root results in section 4, we proceed as follows:

Let πi,t (with i = 1, 2, . . . , N and t = 1, 2, . . . , T ) be a balanced panel of inflation

rates consisting of N individual regions with T observations, respectively. The

starting point of our analysis is the following test equation:

∆πi,t = ρiπi,t−1 + ui,t, (A.1)

where −2 < ρi ≤ 0, and ui,t has the following error-components representation

ui,t = θt + εi,t. (A.2)

In this specification, θt represents a common-time effect and εi,t is a (possibly serially

correlated) stationary idiosyncratic shock.

The Levin-Lin test procedure imposes (both for the null hypothesis of non-stationarity

and for the alternative hypothesis of stationarity) the homogeneity restriction that

all ρi are equal across individual regions. Thus, the null hypothesis can be formu-

lated as:

H0 : ρ1 = ρ2 = · · · = ρN = ρ = 0,

and the alternative hypothesis (that all series are stationary) is given by:

H1 : ρ1 = ρ2 = · · · = ρN = ρ < 0.

To test this null hypothesis we proceed as follows:

1. First, we control for the common-time effect by subtracting the cross-sectional

means:

π̃i,t = πi,t −
1

N

N
∑

j=1

πj,t (A.3)

Having transformed the dependent variable we proceed with the following test equa-

tion:

∆π̃i,t = ρπ̃i,t−1 +

ki
∑

j=1

φi,j∆π̃i,t−j + εi,t. (A.4)

The lagged differences of π̃i,t are included to control for potential serial correlations

in the idiosyncratic shocks εi,t. Whereas we equalize the ρi across individuals we al-

low for different degrees of serial correlation ki (with i = 1, . . . , N) across them. The

number of lagged differences for each region is determined by the general-to-specific

method of Hall (1994) which is recommended by Campbell and Perron (1991).

2. The next step in our testing procedure is to run the following two auxiliary

38



regressions

∆π̃i,t =

ki
∑

j=1

φ1i,j∆π̃i,t−j + ei,t. (A.5)

π̃i,t−1 =

ki
∑

j=1

φ2i,j∆π̃i,t−j + νi,t−1. (A.6)

and to retrieve the residuals êi,t and ν̂i,t−1 from these regressions.

3. These residuals are used to run the regression

êi,t = ρiν̂i,t−1 + ηi,t. (A.7)

The residuals of (A.7) are used to compute an estimate of the variance of ηi,t:

σ̂2
ηi =

1

T − ki − 1

T
∑

t=ki+2

η̂2
i,t (A.8)

4. Normalizing the OLS residuals êi,t and ν̂i,t−1 by dividing them through σ̂ηi

yields:

ẽi,t =
êi,t

σ̂ηi
(A.9)

ν̃i,t−1 =
ν̂i,t−1

σ̂ηi
(A.10)

5. The normalized residuals are used to run the following pooled cross-section

time-series regression:

ẽi,t = ρν̃i,t−1 + ε̃i,t. (A.11)

Under the null hypothesis, ẽi,t is independent of ν̃i,t−1, i.e., we can test the null

hypothesis by testing whether ρ = 0. Unfortunately, the studentized coefficient

τ =
ρ̂

σ̂ε̃

N
∑

i=1

T
∑

t=2+ki

ν̃2
i,t−1

with

σ̂ε̃ =
1

NT

N
∑

i=1

T
∑

t=2+ki

ε̃i,t

is not asymptotically normally distributed. Levin and Lin (1993) compute an

adjusted test statistic based on τ that it is asymptotically normally distributed.

However, we do not make use of their adjustment procedure but use bootstrap

methods to compute critical values for the null hypothesis. This procedure is

described in section A.2.
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A.2 Bootstrap Procedure

Since the finite-sample properties of the adjusted τ statistics are unknown and since

idiosyncratic shocks may be correlated across individual regions we rely on bootstrap

methods to infer critical values for the τ statistics. More precisely, we employ

a nonparametric bootstrap where we resample the estimated residuals from our

model. The starting point of our bootstrap approach is given by the hypothesized

data generating process (DGP) under the null hypothesis

∆πi,t =

ki
∑

j=1

φi,j∆πi,t−j + εi,t. (A.12)

Our procedure is as follows:

1. We retrieve the OLS residuals from estimating the DGP under the null hy-

pothesis. This yields the vectors ε̂1, ε̂2, ..., ε̂T , where ε̂t is the 1xN residual

vector for period t.

2. Then, we resample these residual vectors by drawing one of the possible T

residual vectors with probability 1
T

for each t = 1, . . . , T .

3. These resampled residual vectors are used to recursively build up pseudo-

observations ∆π̂i,t according to the DGP (using the estimated coefficients φ̂i,j).

4. Next, we perform the Levin-Lin test (as described in subsection A.1) on these

observations (without subtracting the cross-sectional mean). The resulting τ

is saved.

5. Steps two to four are repeated 5,000 times. The collection of the τ statistics

form the bootstrap distribution of these statistics under the null hypothesis.
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