Multistage Optimization with the help of Quantified Linear Programming

TECHNISCHE UNIVERSITÄT DARMSTADT

PD Dr. Ulf Lorenz

Quantified Linear Programs¹⁾

$$\exists x_1 \in [0, 1] \ \forall x_2 \in [0, 1] \ \exists x_3 \in [0, 1] : \\ \begin{pmatrix} 0 & -1 & -1 \\ -1 & 1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

> Union of all winning policies forms a polytope..

1) K. Subramani. Analyzing selected quantified integer programs. Springer, LNAI 3097, pages 342–356, 2004.

Quantified Linear Programs

Quantified Linear Program (QLP)

- continuous variables
- polyhedral solution space
- relaxation of QIP

Complexity is unknown in general.

- There is a winning policy against the universal player if and only if there is a winning policy against a universal player who is restricted to {0,1}.
- Vertex complexity stays good-natured as long as the number of quantifier changes is limited by a constant.

Quantified Linear Integer Programs

$$\exists x_1 \in [0,1] \ \forall x_2 \in [0,1] \ \exists x_3 \in [0,1] \ , \text{ x integer:} \\ \begin{pmatrix} 0 & -1 & -1 \\ -1 & 1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

Quantified Integer Program (QIP)

- integral variables
- can be visualized as a game-tree, strategy
- PSPACE-complete

Example problem: Dynamic Graph Reliability

V2	$\exists x_1, x_2 \forall y_{2,4}, y_{2,5} \exists x_3 \forall y_{3,4}, y_{3,5} \exists x_4$	$,x_5,x_{arDelta}$ (all binary)
	$ x_1 = x_4 + x_3 x_2 + x_3 = x_5 x_1 + x_2 = 1 x_4 + x_5 = 1 $	Flow constraints
$ \begin{array}{c} _{V_3} \\ \hline \\ $	$ \le (1 - y_{2,4}) + (1 - x_1) + x_{\Delta} \\ \le (1 - y_{3,4}) + (1 - x_2 - x_3) + x_{\Delta} \\ \le (1 - y_{2,5}) + (1 - x_1) + x_{\Delta} \\ \le (1 - y_{3,5}) + (1 - x_2 - x_3) + x_{\Delta} $	constraints for existential player
	$2x_{\Delta} \le y_{3,4} + y_{3,5} + y_{2,4} + y_{2,5} \big\}$	Critical constraint for the universal player

Further example problems

- Connect6
- system synthesis of a pump system
- two stage jobshop
- two stage car-sequencing

macł Pape	nines 1 , 2, 3
	Table 1: Jobshop model notation.
J	set of jobs
M	set of machines
T	set of tasks, $T \subseteq J \times M$
O	taskorder, $O \subseteq T \times T$
$s_{j,m}$	start time (integer) of task (j,m)
$d_{j,m}$	duration of task (j,m)
$\delta_{j,m}$	additional duration of task (j,m) in case of delay
$e_{j,m}$	earliness of task (j,m) , i.e., $e = \max\{d^1 - d^2, 0\}$
\overline{e}	mean earliness
m	makespan
r _{u,j,m}	indicator of unary encoding of retarded task
r̃ _b	indicator of binary encoding retarded task
w	wrapping indicator for binary to unary translation

Table 2: Jobshop tasks.

job	machine	duration	extra
Paper1	Blue	45	5
Paper1	Yellow	10	0
Paper2	Blue	20	5
Paper2	Green	10	10
Paper2	Yellow	34	0
Paper3	Blue	12	0
Paper3	Green	17	0
Paper3	Yellow	28	20

Table 3: Jobshop order.

prior	task	later task			
Paper1 I	Blue	Paper1	Yellow		
Paper2 (Green	Paper2	Blue		
Paper2 I	Blue	Paper2	Yellow		
Paper3	Yellow	Paper3	Blue		
Paper3 I	Blue	Paper3	Green		

TECHNISCHE UNIVERSITÄT DARMSTADT

FLUID

SYSTEM TECHNIK

Table 4: Solution of the Jobshop Example.

sc.	1 B	1 Y	st 2G	tart i 2B	time 2Y	s 3Y	3B	3G	m.s.
first stage solution									
	0	45	0	45	65	0	70	82	99
1	0	50	0	50	70	0	70	82	104
2	0	45	0	45	65	0	65	82	99
3	0	45	0	45	70	0	70	82	104
4	0	45	0	45	65	0	65	82	99
5	0	45	0	45	65	0	65	82	99
6	0	45	0	45	65	0	65	82	99
7	0	45	0	45	65	0	70	82	99
8	0	48	0	50	70	0	75	87	104

A degree of freedom, i.e. this is no worst-case scenario.

TECHNISCHE

UNIVERSITÄT DARMSTADT

Opportunity 1: Deterministic equivalent

n universal variables

- n "uncertainty bits" >>
- 2ⁿ many scenarios >>

Opportunity 2: Tree search and cut algorithm

starting with 0/1-QIPs, run into tree from root downwards

Opportunity 2: Tree search and cut algorithm

starting with 0/1-QIPs, run into tree from root downwards

Opportunity 2: Tree search and cut algorithm

starting with 0/1-QIPs, run into tree from root downwards

Best first search algorithm?

Curently depth first search -> Alphabeta algorithm

Algorithm 1: A basic alphabeta (int d, int a, int b) routine, sketched

- 1 compute LP-relaxation, solve it, extract branching variable or cut;
- 2 if integer solution found then return objective value; // leaf reached

```
3 if x i is an existential variable then score := -\infty; else score := +\infty;
```

```
4 for val ix from 0 to 1 do // search actually begins ...
```

```
if level finished(t) then // leave marked recursion levels
5
```

```
if x i is an extistential variable then return score;
```

```
else return -\infty;
```

end

6

7

```
assign(x i, val[val ix], ...);
 8
        v := alphabeta(d-1, fmax(a, score), b);
 9
        unassign(x i);
10
        if x i is an existential variable then
\mathbf{11}
            if v > score then score := v; // existential player maximizes
12
            if score \geq b then return score;
13
        else
            ... anallogously ...;
\mathbf{14}
        end
   end
```


Opportunity 2: Tree search and cut algorithm

starting with 0/1-QIPs, run into tree from root downwards

Algorithm 2: A local repetition loop extends the basic algorithm with conflict analysis and learning; replaces line 9 in Algorithm 1

```
1 repeat
       if the current level is marked as finished then leave the recursion level;
 \mathbf{2}
       if propagate(confl, confl var, confl partner, false) // unit prop. [11] then
 3
            if x i is an existential variable then
 \mathbf{4}
                v = alphabeta(t+1, lsd-1, fmax(a, score), b);
 5
                if v > score then score := v;
 6
                if score \geq b then break;
 7
            else
             | ... analogously ...;
            end
       else
            add reason, i.e. a constraint, to the database; // [11]
 8
            returnUntil(out target dec level); // set level_finished(...)
 9
            if x i is an existential variable then return score; else return -\infty;
10
       end
```

until there is no backward implied variable;

Yasol results

# univ. var.		Depqbf	DEPCplex	Yasol
1-5 UV	Time	39185	41133s	73732
	#solved	312/373	315/373	259/373
6-10 UV	Time	1805s	1351s	2146s
	#solved	38/41	39/41	38/41
11-15 UV	Time	7961s	$25297 \mathrm{s}$	11023s
	#solved	84/97	65/97	79/97
16-20 UV	Time	2609s	84685s	5929s
	#solved	166/170	37/170	167/170
21+ UV	Time	16856s	$69600 \mathrm{s}^3$	39620s
	#solved	96/116	0/116	60/116
Σ	Time	68416s	194128s	132350s
Σ	#solved	696/797	456/797	603/797

A collection of 797 QBF instances, grouped concerning the instances' number of universal variables.

Yasol results

No. UV	DEPCplex	Yasol	DEPScip	DEPCbc
0	59 / 59	24 / 59	48 / 59	34 / 59
$(\max 1h)$	19520s	132129s	55062s	112958s
1 to 4	138 / 138	103 / 138	137 / 138	138 / 138
$(\max 900s)$	42s	39984s	1072s	354s
10 to 14	46 / 46	46 / 46	34 / 46	23 / 46
$(\max 1200s)$	1854s	972s	23440s	38867s

A collection of 0/1-IPs and artifically constructed 0/1-QIPs, grouped concerning the instances' number of universal variables.

Future research

- existential integer variables
- continuous variables in the last stage
- more sophisticated cutting planes
- more models
- best-first search

THANKS FOR YOUR ATTENTION

