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Abstract. This paper analyzes the dynamics of a two-dimensional microfounded predator-
prey model. It is shown that the dynamics closely resemble those of a model commonly
used in mathematical biology if parameters of the latter are suitably restricted. The positive
equilibrium of the microfounded model is globally asymptotically stable for positive initial
values largely irrespective of the parameter values chosen. If a version of Allee’s Law is
included, however, species extinction becomes possible.
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1 Introduction

Mathematical biologists have recently extensively studied an alternative to the clas-
sical Lotka-Volterra model and its variations. The classical approach has been losing
ground since some of its predictions are not in line with many field observations.
The alternative theory relies on the so-called ratio-dependent predator-prey mod-
elsﬁ Kuang and Berettaj d1998‘) have analyzed the global dynamic behavior of the
following two-dimensional ratio-dependent type predator-prey model:
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Here, n; and n, denote the prey and the predator population, respectively, and
a, b, d, f, m, and K are positive parameters whose biological interpretation can
be found in Kuang and Berettaj &1998), e.g. These authors have shown that the
system possesses a unique and globally asymptotically stable positive equilibrium
(that is, an equilibrium where both n; and n, are positive) for positive initial values
if f>d and am = b. While f > d is a necessary condition for the existence of
such an equilibrium, the condition am = b is sufficient for its global stability but
not necessary for existence. If am < b, the global dynamic behavior of the model
changes substantially. E.g., extinction of both species becomes possible. A further
analysis of these equations can be found in Hsu et al. (2001), where it is shown that
even limit cycles and heteroclinic cycles may exist if am < b.

11t should be noted that the debate on the appropriate type of models is not yet finished and that
the ratio-dependent models do also have their critics, cf. e.g. Abrams and Ginzburg (2000) and Deng

et al. 42003).
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A common feature of conventional predator-prey models is that they are macro
approaches in the sense that populations and their development in time are the ba-
sic units of analysis. As Eichner and Pethig d2004ab put it, these macro approaches
neglect the processes at the micro level of preying and being preyed upon which
ultimately generate the growth functions describing the population dynamics. Such

a microfoundation of predator-prey models based on economic methodology has
been initiated b%i - 1976) and further developed by Tschirhart (2000), Pethig
and Tschirhart (2001), and Eichner and Pethig (2004b), e.g.

The present paper focuses on the following microfounded two-dimensional sys-
tem introduced by ‘Eichner and Pethig (2004b):
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For i =1,2, e;, y;, 1; and Z; as well as ry are positive constants, respectively, while
0 < a; <1. Cf. Eichner and Pethié &2004b) for the ecological or economic interpreta-
tion of these parameters. The functions A’ are defined by

Al(ny) = min{l,@}, i=1,2. 5)
1

The inclusion of the functions A’ corresponds to the idea that the organism’s gen-
eration of net offspring is the more hampered, the further n; drops below some
critical population level 7i; > 0. According to Allee’s Law, species i may be called an
endangered species if n; < 7i; (cf.‘Berryman,‘ZOOEi‘).

Regarding the microfoundation, equations (3) and (4) are derived in Eichner
and Pethig (2004b) from the maximization of a net-offspring function
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of the representative organism of species i, where 0 < @; < 1 and y; > 0, subject to
the resource constraint
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X;—1 is organism i’s intake of biomass of its prey species i — 1 and z; is organism i’s
loss of own biomass to its predator, species i + 1. For i =1, x;_; = X is the demand
of organism 1 for a basic resource whose total supply per period is 15 > 0. e; >0
is some exogenous lump-sum income of species i and p; is the market price of
biomass of species i. Since species 2 is the top predator its biomass price is set
p> = 0. The equilibrium conditions

Inn=nXxXp, mMmz1=mx

are used to determine the equilibrium values of py, p1, X, X1, and z;, which are
substituted into the net-offspring functions. Equations (3) and (4) then follow by
substitution into the dynamic equations 7; = Bin;, i=1,2.



Eichner and Pethig (2004b) have analyzed the resulting dynamics of a three-
dimensional food chain by means of numerical simulations. Among their results is
that the positive equilibrium, which they have shown to be unique, is approached
for all positive initial values if one sets Al(n;) =1, i =1,2,3. Thus, extinction in
the three-dimensional system seems to be impossible unless Allee’s Law is explicitly
considered. The purpose of the present paper is to give a complete characterization
of the dynamics in case of a two-dimensional system with just two species.

As a slight generalization of the two-dimensional case, the parameters 1 —a; are
replaced by §; = 0 and the restrictions 0 < a; < 1 by a; > 0. Repeating the deriva-
tions of ‘Eichner and Pethié 42004b) for the two species case yields the differential
equations
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As Zf ® is just a constant in the two-dimensional setting, it will be assumed that £, =
0. This assumption simplifies the analysis without substantially altering the results
(B2 > 0 would merely necessitate a modification of some parameter assumptions).
In this case, the differential equations can be given a slightly simpler appearance:
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A further simplification follows by setting Al(n)) =1, i =1,2, for the time being.
Letting
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equations (6) and (7) take the form
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While equation (9) is now qualitatively equivalent to (2) if a, = 1, equation (8) can-
not be transformed into equation (1) using the present setting. Eichner and Pethig
(2004a) have shown, however, that equation (1) can be derived from a slightly mod-
ified micro model of the ecosystem.

The remainder of this paper is devoted to an analysis of equations (6) and (7).
An interesting question is whether the dynamic properties of these equations are
similar to those of equations (1) and (2). To answer this question, Section[2 starts
with an analysis of the simplified equations (8) and (9). The results will then be




used to consider the original equations (6) and (7) in Section[3. Section/4 provides
a concluding comparison of the microfounded and the conventional model. It will
be shown that the dynamics of (8) and (9) if fc > )f;/“z and 0 < a; <1 closely re-
semble those of (1) and if f>d and am = b. While according to (1) and (2)
extinction is possible if f > d and am < b, extinction in the microfounded model
is impossible under reasonable assumptions unless Allee’s Law is included, that is,
unless equations (6) and (7) instead of (8) and (9) are used.

2 Analysis of Equations (8) and (9)
2.1 Equilibria and Local Stability

As the right-hand sides of (8) and (9) are not defined at (n;, n,) = (0,0), it will be
assumed that 7y, = 1, = 0 if n; = np, = 0 by definition. Calculating the limit for
lim,,  n,)—(0,00 Shows that under this assumption both 7; and 7, are continuous on
R? ={(m,m) € R* : n; =2 0,m, 2 0} if 0 < a; < 1, although not differentiable at (0,0),
cf. Appendix/A. A similar argument applies with respect to equations (6) and (7).

All assumptions supposed to hold in the sequel are summarized as follows. They
will not be repeated each time a proposition is stated.

Assumptions. All parameters appearing in equations (8) and (9) [as well as in (6)
and (7)] are positive. In addition,

0<a;<1, 0<ay,<1, and fc>y§/“2.

The initial values of ny and n, are non-negative. If n; = n, =0, then i, = i, = 0.

These assumptions serve the following purposes: 0 < a; < 1 ensures continuity of
(8) and (9) on R?, fc> y;/ % is necessary for the existence of a positive equilibrium,
and 0 < a, < 1 will be needed when analyzing equation (7).

There are three equilibria. To begin with, set n; =0 and n, > 0, implying 77; =0
and 7, = —y,n,. Thus, there is a first (trivial) equilibrium Ej, = (0,0) and there can
be no other equilibrium where n; = 0. It is obvious that (0,0) is stable along the
np-axis. Thus, if there is no prey, the predator will become extinct.

Setting n, =0 and n; > 0 implies 7, = 0 and

5 _ o zP -
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It is straightforward that there is a second equilibrium E; at
(2
ny, ) =\ To—5
ne

that is stable along the n;-axis. Thus, if there is no predator, the prey population
reaches a steady state that is directly proportional to the size of the basic resource,
1o.



A third equilibrium, E,, entails positive populations of both species. If n; >0
and n, > 0, setting 71, = 0 yields
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_ 2
m,}/;/ag

=q

np m=qn. (10)

Hence, a positive equilibrium cannot exist unless the condition

fe>y)® (11)

holds, which has already been assumed. Since yé/ 2 should usually be a small num-

ber in relation to f¢, this assumption is rather natural. Upon subsitution of (10)
into 71; = 0 one gets
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which together with (10) describes the positive equilibrium E,. Observe that in any
of the three equilibria thus considered the population of both species is propor-
tional to the size of the basic resource, ry.

As for the stability of the positive steady state, the Jacobian of system (8), (9)
evaluated at E, can be shown to have the following pattern of signs (cf. Appendix
B):
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Therefore, Tr(J) <0 and |/| > 0, implying that the equilibrium E, is locally asymptot-
ically stable by the Routh-Hurwitz criterion.

These results are summarized in

Proposition 1 There are three equilibria. Ey, = (0,0) is locally asymptotically stable
along the n,-axis, E; = (rozf v /7/}/“1,0) is locally asymptotically stable along the
n -axis, and

Egz
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is locally asymptotically stable.

2.2 Global Stability

The global dynamic behavior of solutions can be determined using the phase dia-
gram[1, whose derivation is as follows. From (10), the isocline 7, = 0 is a positively
sloped straight line through the origin (unionized with the n,-axis) in (n,, n,)-space
if conditon (11) holds. Setting 7, = 0 and solving for n, yields the following expres-
sion (unionized with the n,-axis) for the isocline 7; =0 :
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Considering the denominator, it is straightforward that

prlax 1
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Thus, there is a vertical asymptote at n,. Similarly, under the precondition that
n; >0,

> < pim 1
numeraltor2 0= m = 7 Tar = - (15)

1
Therefore, the isocline cuts the 7, -axis at the equilibrium E, where n; =7, > n, (and
at the equilibrium E,, where n; = 0). Comparing the sign patterns of the numerator
and the denominator shows that the isocline lies below the n;-axis for 0 < n; < n,
and n; > n;, while it lies above the axis if n, <n; <n;.
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Figure 1. Phase Diagram of Equations (8), (9)

As has been shown in Appendix|B, the cross partial derivatives of (8) and (9) are

% <0 and % >0,

on, om

respectively. These partial derivatives give rise to the + and — signs indicating the
directions of motion off the zero isoclines Putting all this information together
yields the phase diagram 1. For the sake of completeness, it is shown in Appendix
Clthat the slope of the isocline 72; = 0 is negative if n,<m<mn.

2Due to the existence of the vertical asymptote, there is one specialty to be taken care of. Above
but near the isocline 77; = 0 in the region where ny is negative, 717 <0. As 777 > 0 below 77 =0 in the
positive region, the question arises where the sign of 177 changes. Inspection of equation (8) shows
that a sign change off the isocline 721 = 0 derived from (13) (or from 71 = 0) is possible only if (8) has a
vertical asymptote at ny + mny = 0. Thus, if n; > 0 the sign change must occur in the irrelevant region
where ny <0.



The phase diagram reveals that the equilibrium E, is globally asymptotically sta-
ble for strictly positive initial values. The proof relies on the fact that it is always
possible to draw a rectangular closed region from which the trajectories cannot es-
cape (cf. the dashed rectangle in Figur[1). This proves that the differential equations
(8) and (9) have a solution defined for all £ = 0 (Hirsch and Smale, 1974, p. 172).
According to the Generalized Poincaré-Bendixson Theorem (cf. @, @, p. 243),
any limit point of trajectories must be an equilibrium if there exists neither a closed
orbit nor a separatrix cycle. As the considered region contains just one equilibrium
which is locally asymptotically stable, there is no separatrix cycle. Closed orbits
are ruled out by the direction of movements in the four regions separated by the
zero-isoclines, or, more rigorously, by Dulac’s criterion (cf. Appendix/D). It follows
that there is just one possible limit point of trajectories if ¢+ — oo, the equilibrium
E,. This proves global stability.

Notice that Figure 1 gives a qualitatively complete picture of the dynamics of
system (8), (9). If both initial values are positive, the equilibrium E, will be reached
and both species will survive. If the intial value of the predator species is zero, a
positive inital population of the prey species will reach the equilibrium E;. Finally,
if the initial value of the prey species is zero, E, will be reached and the predator
species becomes extinct. The analysis is summarized in

Proposition 2 Each trajectory of system (8), (9) converges to an equilibrium. If
1m1(0) = 0 < 12(0), imy—.oo (11 (2), 12(£)) = Ep. If m(0) > 0 = 12(0), limy—.oo (121 (2), 12 (1)) =
E;. If n1(0) > 0 and n,(0) >0, lim,_o,(n;(£), ny(t)) = E.

3 Analysis of Equations (6) and (7)
3.1 Partitioning the Phase Diagram

Using similar parameters as in equations (8) and (9), equations (6) and (7) read
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where A!(n;) as defined in (5) is repeated here for convenience:

Al(ny) = min{l,@}, i=1,2.
1
As a first step, observe that the phase diagram can now be partitioned into
three regions depending on the values of 7;. As long as n; = #1;, the phase diagram
1 applies as before. For the vector field generated by (8) and (9) always points
inwards any closed rectangular region lying in the positive quadrant, cf. Figure 1. If
n; < fi; for i =1 and/or i = 2, the dynamics will change. The result will depend on
the relative position of the equilibrium E,. Figure|2|indicates the situation for the
case where the equilibrium values of n; and n, both exceed 7i; and 1, respectively.
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Figure 2. Partitioning the Phase Diagram

It remains to determine the shape of the isoclines in the regions to the left of 7; and
below 7i,.

As there are a lot of feasible parameter configurations giving rise to various
details of the implied dynamics, this section solely relies on the analysis of repre-
sentative phase diagrams without analytically analyzing local stability or instability
of equilibria, which is straightforward in most cases, however. Similarly, the ex-
clusion of closed orbits is not explicitely considered as the phase diagrams reveal
that trajectories are always trapped in either the basin of attraction of the positive
equilibrium or in a region where at least one species eventually becomes extinct.

3.2 Small Predator Population

Below 7i,, the shape of the isocline 7; = 0 is left unchanged, while 7, = 0 can be
solved for n; to yield
(y27) V2 mny

L= fcnzllaz - (Yzflz)l/az, (16)

which is positive at n, = 71, due to (11). At ny :=y,7,/(fc)* < i1, there is a hori-
zontal asymptote. As n, declines further, n; in (16) becomes negative. In addition,
it is shown in Appendix [E| that @, < 1 is a sufficient condition for the slope to be
negative. Thus, the relevant part of the isocline has the shape shown in Figure3.
There emerges a new equilibrium Ez, which is unstable, however. As the direc-
tion arrows indicate, the equilibrium E, may even be approached if n, < i, that is,
if the predator is an endangered species. Extinction of the endangered species is
certain, however, if 1, < ng. The system then approaches the equilibrium F; on the
n;-axis, where only the prey survives.
Regarding the policy implications of the complete model of Eichner and Pethig
(2004b), it should be noted that humans may influence the ecosystem by variation
of the size of the basic resource, r,. While the isocline 72, = 0 is independent of ry,
71 = 0 will shift to the left as ry decreases. It is therefore interesting to analyze the
behavior of the system as E, vanishes sliding along 7, = 0 when ry decreases. Such
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Figure 3. Dynamics in Case of n < 7ip

a case, where the equilibrium E, does not exist as it would involve an equilibrium
value of n, which is smaller than 7i,, is shown in Figure[4. As the direction arrows
indicate, the equilibrium E; will be approached. Notice, however, that this result
presupposes that n; = 7;, as the modifications of the dynamic system arising if
n; < 7i; have not been taken into account yet.

n N .
2 n1:0 7’l2=0

n

Figure 4. Dynamics in Case of ny < i, if E; Vanishes

3.3 Small Prey Population

To the left of 711, the shape of the isocline 71, = 0 is left unchanged, while 73; = 0 from
(6) can be solved for n, to yield

Brevm [2n)!" = ry P (g1 ro) @1 /P1
ny = g (17)
ex(ay + B1) (Y1) VP (my [ 1) /P — B Zy ey !

Recall that 0 < a; <1 and B; > 0. As to the denominator, it is straightforward that
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Thus, there is a vertical asymptote at ;. Similarly,

> ai/(ai-1) =f1/(@1-1) 1 0
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<0 1 (ylnl)ll(al—l)

>

numerator = 0—=m
Thus, the isocline cuts the n;-axis at n? < ny'. Similar considerations as in Section
2.2 lead to the graph of the isocline shown in Figure 5| As to the + and — signs
beneath the isocline, the remarks given in Footnote[2 apply analogously.

np

a m

VR

Figure 5. The Isocline 773 =0 if n; < 7

n

With respect to the dynamics, it is important whether a part of the isocline (17)
in the positive region lies to the left of 7. Setting n; é 7, shows that this condition

. . L <
is equivalent to 7i; SIOF

fll A fll ﬁl .

VIIA

<
>
of (17) for n; > n{ lying to the left of 77;. Similarly,

Thus, if 71; < 71, there is a part
. <. .
setting ny’ < 7y yields

Therefore, the vertical asymptote of (17) lies to the left of 7, if and only if 71 lies to
the left of the asymptote at n, of equation (13). Proceeding under the reasonable
assumption that 7, < 7, it follows that two cases must be considered.

1y

S
I
=)
Ky
I
=)
S
)
I
(e}

U

1
1
1
1
1
1
1
1
1
[
1
1
1
1
1
1
1
r
|
[

S
N

=
51--
Ist-

Figure 6. Dynamics in Case of n; < 7y if 711 < 4
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First, assume that 7, < n,. Figure/6 shows a possible configuration in this case.
Other configurations are possible, depending on the relative position of ;. In case
of Figure[6] the predator will become extinct if the initial values of n; and n, are
such that the system starts below the isocline 72, = 0 or sufficiently far to the left of
the 72y = 0 isocline. Even the prey may become extinct as the equilibrium at n; = n?
is unstable.

Second, let n, < 1y < 7. This implies that the right-hand part and the left-hand
part of 7 = 0 are both valid only up to the point where n; = 7;. Moreover, as (6!) is
continuous at n; = 7, the isocline itself is continuous here. One possible configu-
ration is shown in Figure 7, where the positive equilibrium E, vanishes. Depending
on parameter values, this equilibrium could as well persist. In case of Figure|7} the
predator cannot survive in the long run.

n;

Figure 7. Dynamics in Case of nj < 71y if n; <7 <'m

Putting all information together yields the overall phase diagram, whose appear-
ance depends on the specific values of 7, and 7i,. Figure 8 provides one example.

np

E T, m

Figure 8. A Complete Phase Diagram
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Although not all possible configurations have been analyzed in detail in this sec-
tion, it is straightforward to consider the principle possibilities in terms of further
phase diagrams. As with the examples given here, it is fairly obvious that the only
possible limit points for £ — oo are equilibria. Exact proofs could be given along the
lines in Section|2.2, The following proposition summarizes the main results.

Proposition 3 Let (0,0) < (7, 7p) < E,. Then each trajectory of system (6) and (7)
converges to an equilibrium. The positive equilibrium E, is asymptotically stable
and its basin of attraction covers at least {(ny, n;) € R* | ny = #iy, ny = ip}. There exist
initial values my € (0, 7) and n, € (0, iip), respectively, such that the predator or both
species eventually become extinct.

4 Discussion

If the functions A’(n;) are set A’(n;) = 1, the dynamics implied by equations (8) and
(9) under conditions fc > y;/ “ and 0 < a; < 1 widely resemble the dynamics of
the conventional model (1) and (2) if f > d and am = b, although the differential
equations themselves are rather distinct. In both cases, there is a unique and glob-
ally stable equilibrium where both species survive if both initial values are positive.
If there is no prey, the predator becomes extinct, and if there is no predator, the
prey reaches a positive equilibrium. In fact, the phase diagram of (I) and (2) can
be shown to look exactly like Figure 1 if f > d and am > b. Empirically, it would
be impossible to distinguish whether a given set of observations was generated by
model (I) and (2) or by (8) and (9). If f > d and am = b, the isocline 7i; = 0 becomes
a straight line, leaving the qualitative implications unchanged, however.

The condition fc¢ > yé/ %2 js necessary and (given other assumptions about pa-
rameters following from the micro approach) sufficient for the existence of a posi-
tive equilibrium in the microfounded model. In contrast, f > d is just a necessary
condition in the conventional model. If am < b, such an equilibrium exists only if
f is suitably bounded from above (cf.‘Kuang and Beretta, 1998, p. 392). Under such
circumstances, equations (1) and (2) can generate entirely different dynamics. E.g.,
it is possible that the positive equilibrium E, is locally but not globally asymptoti-
cally stable, and one or both species could become extinct. Moreover, even limit
cycles or heteroclinic cycles are possible (cf. Hsu et al.‘, ‘2001). All these cases are
excluded in the microfounded model.

Iff<dorfc= y;/ “ respectively), the positive equilibrium disappears in both
models. However, this case is rather irrelevant considering the microfounded model.
Notice that fc = a;z1e/(f1e) and that e}, e; and a;, B, should reasonably be of
comparable magnitude, respectively, while z;, the maximum amount of biomass
that the prey could use for transactions, should reasonably exceed the natural death
rate of the predator, ¥, < 1, raised to the power of 1/a, = 1. Thus, the analysis of
this case is merely of theoretical interest.

The microfounded model thus leaves no room for the empirically relevant case
of species extinction, which is possible in case of the conventional model for am < b
even if f > d. This result shows that the economics approach to ecology, where
species engage in a kind of maximization process, can resemble the dynamics of

12



settled biological models but adds more stability by excluding extinction. This phe-
nomenon can be reintroduced, however, by taking Allee’s Law into account. As the
analysis of equations (6) and (7) has shown, adding the A’(n;)-functions leaves the
dynamics unaltered for a region around the equilibrium with positive populations
of both species but adds the possibility of extinction if the respective initial values
are sufficiently small.

Appendix
A Continuity of (8) and (9) at the Origin

Using the definition of m, it is obvious that n; e} + npex < ey (ny + mnp) on Rﬁ, from which

nie+nye
0SS ——=<e.
n +mny

Applying some transformations yields
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As n; — 0, both interval boundaries converge to zero if 0 < a@; < 1. Thus,

(ro)””(C[rueﬁnzez])ﬁ1 =0
- - —J1i| =Y

n ny+mny

lim
(n1,n2)—(0,0)

proving continuity of (8) on R? if 12y = 0 for n; = np = 0 by definition. Continuity of equation
(9) is proven similarly.

B Derivation of (12)
The partial derivative of (8) with respect to n; evaluated at 77 =0 is

om
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1 _ 2 E T e
(n+mny)(nye; + npen) m ny+mny

m=0

Using the definition of m, it follows that me; — e, = (a1 + f1)e2/ 1 —e2 = ay e/ 1 > 0. Substi-
tuting into (AI) shows that the first term in parentheses and therefore the entire expression
is negative.

The partial derivative of (8) with respect to ny,

o _ n(e; — mey) (E)“l (c[n1e1 + npe] )ﬁl

=p1
ony (m+mmy)(nie; + npe) \ my m+mny

is negative since e, — me; <0.
Finally, it is straightforward that the partial derivatives of (9) are

oy azmn; ( fem )“2 0
- >
om mni+mny) \ny+mny
and o a
1 Ay mny cny 2
—_— =-— ! ) <0, (A2)
0nz | j,=o m+mng \np+mny

proving (12). Notice that the signs of the cross partials are determined even off the isoclines.
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C The Slope of (13)

Differentiation of y
Brerm [Zl -7 ﬁl(nl/ro)‘“/ﬁl]

np =
ex(ay + ,BI)Y}/'BI (m /1) /Pr — B z1 e

with respect to ny, letting D be an abbreviation for the denominator, yields:

61’12

6n1

(ﬁlel [21 —Y}/ﬁl(nl/ro)“l/ﬁl] _a’lelY}/ﬁl(nl/rO)al/ﬁl)D

2
11=0 D

erexa(ay +ﬁ1))f}/ﬁl(l’ll/ro)o”/ﬁ1 [21 —Y}/ﬁl(nl/ro)‘“/ﬁ‘

D2

Recall relations (14) and (15). As the denominator is positive if n; > n,, this expression is
negative if

(,61 [21 —Y}/ﬁl(m/ro)al/ﬁ‘ —alY}/ﬁl(m/ro)al/ﬁl)D

<ear(a+ 0y, " (m )P 2P o )@ P

The right-hand side of this inequality is positive as z; > yi/ﬁ Yy 1 19)®'Prif ny < 711, The left-

hand side is negative as n; > n, implies that D >0 and 121 — (a; + ﬂl)yi/ﬁl (nllro)“llﬁl <0,
respectively. This proves that the isocline 121 = 0 is negatively sloped if n;, < m <7n;.

D Exclusion of Closed Orbits

Applying Dulac’s criterion (cf. Perko, 1996, p. 262) to equations (8) and (9), there is no
closed orbit lying entirely in Ri +=1{lm,m) € R? : ny >0, > 0} if there exists a function
Be C'(R?,) such that the trace of the Jacobian of (B7, Bzp) is not identically zero and does
not change sign in R? . Now consider the function B = 1/(n; n,). The partial derivative (AI)
has been calculated under the assumption that 72; = 0, which has had just the effect that
the term in square brackets in (8) has been omitted in (Al). Thus, it is straightforward that

dBr) 1 om

61’11 B nny 61’11 11=0
for all (ny, ny) € R?, . An analogous argument shows that, using (A2),

0(Biy) 1 0m

61’12 nynyp ang 15=0

for all (ny,ny) € Rﬁ +- As it follows from Appendix B that both expressions are negative, the
trace of the Jacobian of (Bny, Bri,) is negative for all (n, np) € Ri +» proving that there are no
closed orbits lying entirely in R?,.

E The Slope of (16)

Consider the region where ng < 1y < fip. As the denominator of the derivative of (16) with
respect to ny is positive, it suffices to consider the numerator, which is

1Vay 1/az

1
(y27)"%2m | feny' ¥ — (yaip) 2 —a e m(ya i)' 2.
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A sufficient condition for this expression to be negative is that ay < 1:

1/a2

~ 1/ l/a ~ 1/« ~ 1/
ax(y2iix) " m| feny, * —(yait) —fen, P myanp) ' <0

PEEN (@2 —1)fen'™ —ay(yaii) V' <0.
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