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Abstract

In an integrated dynamic general equilibrium model of the economy and the

ecosystem humans and wildlife species compete for land and prey biomass. We

introduce a competitive allocation mechanism in both submodels such that eco-

nomic prices and ecosystem prices guide the allocation in the economy and in the

ecosystem, respectively. We distinguish the scenarios of an open accessible habi-

tat and a privately owned habitat. In both scenarios efficiency requires different

corrective taxes/subsidies to internalize consumption services externalities. In the

case of an open access habitat additional sources of inefficiency are the divergence

of prices for biomass and land in both subsystems. Finally, we determine values of

all components of the ecosystem in an efficient steady state with special emphasis

on the role and the interplay of ecosystem and economic prices.
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1 The problem

Despite our rich knowledge of significant and large-scale interdependencies between the

ecosystem and the economy (Alcamo et al., 2003), many pertaining environmental-economic

studies tend to be somewhat unbalanced by offering an elaborate analysis of economic activ-

ities and far less elaborate modeling of the ecosystem and ecological feedback effects. To the

extent that such studies ". . . do merge economic and ecosystem concepts [they] tend to ad-

dress isolated markets and a very few species" (Tschirhart, 2000, p. 13). Such approaches

offer limited insights only in the complex impacts on the ecosystem of human activities

such as land conversion for economic use or biomass harvesting. These economic activities

have ramifications and trigger adaptations in the ecosystem and eventually adversely affect

ecosystem services that support human lives.

In his state-of-the-art survey Brown (2000) emphasizes that renewable natural re-

sources are embedded in complex technological interdependencies of ecosystems and that

their allocation is characterized by an ". . . interplay of poorly defined property rights, ex-

ternalities and market failure" (p. 875). He also observes that economic models rarely

extend resource interdependence beyond one or two natural resources (similar: Deacon et

al. 1998) and he criticizes the propensity of economists to treat their oversimplified re-

source models as more than a metaphor when they offer policy advice, e.g. based on an

optimal single species solution that ignores predator-prey interactions and other ecosystem

interdependencies. Among Brown’s (2000) prime research desiderata are increased efforts

to better understand the role and function of ecosystems as well as the need to better inte-

grate economics and ecology. Similar programmatic statements have been made by Finnoff

and Tschirhart (2003a, p. 590).

While economists have a good understanding of the resource allocation mechanism

in market economies by applying the economic concept of general competitive equilibrium

analysis1 we are not aware of a comparable approach to the ecosystem that would be, at the

same time, a suitable microfounded building block for a truly general dynamic equilibrium

analysis encompassing the economy and the ecosystem as its interdependent subsystems.2

To cope with major interdependencies and feedback effects within and between the ecosys-

tem and the economy, we suggest such an integrated general equilibrium analysis that

encompasses both subsystems, the ecosystem and the economy, and treats both at the

same level of analytical complexity. We address the dynamic allocation of land and non-

human biomass with a major focus on the ecosystem model and its links to the economic

1For general equilibrium analyses applied in environmental economics we refer to Mäler (1974), Boven-

berg and de Mooij (1994), Bovenberg and Goulder (1996) or Fullerton and Wolverton (2005).
2For dynamic ecological economic analyses along other lines see e.g. van den Bergh and Nijkamp (1991).
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submodel. Economic methodology is used to explain the interaction of species building on

a small but growing literature.

Hannon (1976) formalized the notion and some implications of individual organisms

optimizing net energy. Tschirhart (2000) treats such organisms as firms and is the first, to

our knowledge, who models the ecosystem with optimizing individuals in a general equilib-

rium framework. Organisms incur energy costs, when preying biomass or sacrificing own

biomass, and these transactions costs change endogenously as to equilibrate all predators’

prey biomass and all preys’ loss of own biomass. Finnoff and Tschirhart (2003a, 2003b)

demonstate the capacity of that approach to tackle harvesting with complex intra-ecosystem

interactions in numerical applied analysis. Eichner and Pethig (2005) take up Tschirhart’s

concept of general equilibrium in an integrated ecological-economic system (IEES). They

replace the concept of equilibrating transaction costs by a complete system of competitive

ecosystem markets and show that individual organisms can be interpreted as price-taking

profit-maximizing firms under the roof and control of a big artificial ’agricultural firm’ (bio-

mass firm). The present paper deviates from Eichner and Pethig (2005) by recognizing in

the formal model that the ecosystem is guided by an autonomous allocation mechanism of

its own in which organisms are isomorphous to consumers rather than firms. Christiaans et

al. (2006) model the ecosystem in isolation and determine the resource allocation in that

system with the help of the competitive mechanism treating individual organisms analogous

to price-taking consumers who maximize net offspring under some transactions constraints.

They show that the competitive allocation mechanism, a proven powerful method of deal-

ing with interdependencies in market economies, can be fruitfully applied to model the

intertemporal allocation in the ecosystem.

In the present paper we take up the approach of Christiaans et al. (2006) to the

resource allocation in the ecosystem and link the ecosystem and the economy as interde-

pendent subsystems in an IEES where both subsystems are microfounded and treated at

the same level of structural detail: individual agents optimize subject to constraints and

competitive markets provide for the compatibility of individual actions (plans).3 In this

setup we then focus on public consumptive ecosystem services provided by the ecosystem,

biomass harvested by humans, and land converted for economic use. In our setup hu-

mans compete with all species for land and for (nonhuman) biomass, but that competition

is grossly unbalanced, since humans are top predators restrained only by their perceived

self-interest.

3Large parts of the ecological and bioeconomic literature focus on macro-level approaches regarding

populations as the appropriate units for studying dynamic ecosystem allocations. There are also ecological

models that link individual behavior to population processes (e.g. Persson and de Roos, 2003) but we are

not aware of an attempt to link such models to an equilibrium model of the economy.

2



The important feature of the IEES is that in both subsystems all (private) goods

and services are traded on perfectly competitive markets. Disturbances - or shocks - in

one of the subsystems cause allocative displacement effects and change relative scarcities

(prices). The shocks spill over to the other subsystem causing price and quantity feedback

effects although the market systems in both submodels are completely disconnected. It is a

particularly important aspect of our approach, and an innovative one to our knowledge, that

there is a market for land and for prey biomass in each subsystem. Since arbitrage activities

between these markets are ruled out it is not clear whether and how the equilibrium prices

in both market segments will differ. The answer will turn out to depend on the property

rights regime of the habitat. We distinguish the scenarios of an openly accessible habitat

and a privately owned habitat. In the former case biomass in situ and the habitat do not

command positive economic prices while under private ownership the partition of total land

into habitat and land for economic use is governed by comparing profitability.

In both scenarios efficiency requires (different) corrective taxes/subsidies to internal-

ize the externality constituted by the consumptive ecosystem services with public good

characteristics. In the case of an open access habitat additional sources of inefficiency are

the divergence of prices for biomass and land in both subsystems. These extra inefficiencies

can be eliminated through taxes on harvested biomass and economic land use equal to, or

even exceeding the ecosystem price of the respective good.

The present approach is strong in providing rich theoretical information on (shadow)

prices in the microfounded ecosystem submodel which is here tied to the general-equilibrium

model of the economy and its economic prices in a rigorous and consistent way. Exploiting

these features we place price tags on and determine values of all components of the ecosys-

tem along an efficient path of the IEES with special emphasis on the role and the interplay

of ecosystem prices and economic prices.

Section 2 outlines the model and section 3 characterizes the efficient allocation of

that model. Section 4 introduces the concept of competitive equilibria of the IEES with

open access habitat and of the IEES with privately owned habitat and presents the main

results on the (in)efficiency of such general equilibria. Section 5 determines the value of the

ecosystem and its components and Section 5 concludes.

2 The model

Consider a non-biomass natural resource whose stock r̄ ∈ R++ is time-invariant and the use

of which is essential for both humans and nonhuman species. We will refer to that resource
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as land because land appears to be a well fitting and very important example.4 To simplify,

the use of land is assumed to be exclusive in the sense that nonhuman species (species, for

short) cannot live on land used for economic purposes, and land used by species is off limits

for humans. The land used by humans, r ∈ [0, r̄] is called economic land and the land used

by species, r̄− r =: s is called habitat. The supply of economic land is expanded or reduced

over time according to5

ṙ = R

(

r
−

,yr
+

)

, (1)

where y⊤

r := (yr1, . . . , yrḡ) ∈ R
ḡ
+ denotes the vector of ḡ (private) inputs used for mainte-

nance and development of economic land. (1) is interpreted as the technology of a land

converting firm. By definition of s the habitat changes over time according to

ṡ = −ṙ = −R (r,yr) . (2)

The habitat s is home of ī species whose populations are denoted by n⊤ := (n1, . . . , nī) ∈

R
ī
+. Individual organisms belonging to the same species are identical. The representative

individual of species i, called organism i for short, generates net offspring

bi = Bi

(

si
+
, zi

+

)

i = 1, . . . , ī (3)

at each point in time. In (3) si ∈ R+ denotes organism i’s exclusive use of habitat resources.

For example, plants occupy a patch of land that gives them (limited) access to sunlight,

fresh water and nutrients. The supply of such habitat services is supposed to equal the size

of the patch occupied by the organism.6

The vector z⊤i := (zi1, . . . , zii, . . . zīi) ∈ R
ī contains all biomass transactions of organ-

ism i. For i 6= j, zij is organism i’s intake of (or in economic terms: organism i’s demand

for) biomass of its prey species j, and zii is organism i’s loss (or supply) of own biomass to

its predators. The sign convention is zij ≥ 0 for i 6= j and zii ≤ 0.

By definition of bi and ni the population growth turns out to be

ṅi = nibi i = 1, . . . , ī. (4)

4At the expense of some stylization, other examples are water basins, water courses or air sheds.
5Upper case letters denote functions and subscripts attached to them indicate first derivatives. A plus

or minus sign underneath an argument denotes the sign of the respective partial derivative.
6This setup describes land used by plants quite well but mobile animals use land in different ways.

Although their land use could be modeled by introducing land services as (congestible) public goods, we

refrain from that extension to keep the exposition simple.
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Being the top predators in the IEES, humans compete with nonhuman species for prey

biomass. Let hi ≥ 0 be the biomass of species i harvested by humans. hi is the output of

the harvesting (production) function

hi = H i

(

ni
+
,yi

+

)

i = 1, . . . , ī, (5)

where y⊤

i := (yi1, . . . , yiḡ) ∈ R
ḡ
+ are harvesting inputs and where H i

ni
> 0 is the population

stock externality known from classical harvesting models. Economic goods and services are

supplied by a representative production firm using the technology

F

(

hf
+

, rf
+

,yf
−

)

≥ 0, (6)

where rf ∈ R+ is the input of economic land services, h⊤

f :=
(
hf1, . . . , hf ī

)
∈ R

ī
+ is the

input of harvested biomass and where y⊤

f := (yf1, . . . , yfḡ) ∈ R
ḡ is the input-output vector

of goods and services. The sign convention is that g is an output, if yfg > 0, and an input,

if yfg < 0.

The human population of consumers is time-invariant. With all consumers being

identical it suffices to consider a representative consumer whose utility is

u = U

(

qc
+

,yc
+

)

, (7)

where q⊤

c := (qc1, . . . , qck̄) ∈ R
k̄ is a vector of public ecosystem services7 and y⊤

c :=

(yc1, . . . , ycḡ) ∈ R
ḡ is a vector of goods and services such that ycg is a (private) good or

service for consumption, if ycg > 0, and it is a labor service supplied by the consumer, if

ycg < 0. The ecosystem services are supplied by the ecosystem according to the function8

q = Q

(

n
+
, r
−

)

=
[

Q1 (n, r) , . . . , Qk̄ (n, r)
]

. (8)

7The ecosystem services considered here ” . . . are not traded or valued in the marketplace . . . [and] . . .

serve as public good rather than provide direct benefits to individual land owners” (Daily et al. 1997, p.

13). The consumption of these ecosystem services can alternatively be interpreted as the nonconsumptive

use of renewable resources whose economic value may be substantial (Brown, 2000, p. 887).
8Qr < 0 in (8) because according to Daily et al. (1997) relatively undisturbed land sustains the

delivery of essential ecosystem services. Albers (1996) argues that preserved land can provide to neighboring

economic land various benefits such as local climate effects, recreation, emission control or an enhanced

view.
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The IEES is closed with the help of the following resource constraints:

yf ≥ yc +
∑

i

yi + yr, (9)

q ≥ qc, (10)

h ≥ hf , (11)

r ≥ rf , (12)

s ≥
∑

i

nisi, (13)

∑

j

njzji + hi = 0 i = 1, . . . , ī, (14)

where h := (h1, . . . , hī) ∈ R
ī
+. The resource constraint (9) is similar to that in conventional

Debreu-type general equilibrium models of the economy where it is, in fact, the only re-

source constraint. All other constraints (10) - (14) specify and formalize the fundamental

interdependence between the ecosystem and the economy: The inequality (10) forces the

economy to be content with whatever ecosystem services q are provided by the ecosystem.

The inequalities (11) and (12) constrain the economic demand for the ecosystem goods bio-

mass and land to the amount of biomass harvested and to the land converted, respectively.

The inequality (13) and the equation (14) force the nonhuman species to accommodate to

the economic land use and biomass predation, respectively. (13) - (14) reflect the iron rule

of the IEES, that all nonhuman species have to contend themselves with what is left after

humans have set apart land and biomass for their own use.

We refrain from modeling durable human-made capital goods, capital formation and

pollution since these additional features would severely raise the complexity of the analysis

without providing new insights.

3 Allocative efficiency in the IEES

To explore the efficiency properties of a general equilibrium of the IEES, consider as a

benchmark the socially optimal allocation determined by a social planner who solves the

optimal control problem:

max

∫
∞

0

e−δtU (qc,yc) dt s.t. (1) - (14).
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We write down the Hamiltonian associated to that complex control problem for the purpose

of keeping track of the Lagrange multipliers and co-state variables:9

LP = U (qc,yc) +
∑

i

βiniB
i (si, zi) + (ρ− γ)R (r,yr) + αfF

(
hf , rf ,yf

)

+
∑

k

αqk

[
Qk (n, r) − qk

]
+
∑

i

αhi

[
H i (ni,yi) − hi

]
+
∑

k

αc
qk (qk − qck)

+
∑

g

αyg

(

yfg − yrg −
∑

i

yig − ycg

)

−
∑

i

αzi

(
∑

j

njzji + hi

)

+
∑

i

αvi(hi − hfi) + αr(r − rf ) + αs

(

s−
∑

i

nisi

)

. (15)

The relevant implications of the first-order conditions of solving (15) are listed in the first

column of Table 1.10,11 The existence issue is answered in12

Proposition 1.

If the function U is quasi-concave and the functions Bi (all i), F , H i (all i), Qk (all k), R

are concave, a solution (α,β,γ,ρ,Am,Ay) to the Hamiltonian (15) exists.

4 The decentralized IEES: Competitive markets in both

subsystems

As is well known, the performance of the competitive mechanism crucially depends on the

specification of property rights since the emergence of competitive markets presupposes

the exclusive assignment (and effective costless enforcement) of property rights. Economic

goods as well as many natural resources that humans and species compete for are exclusively

owned by economic agents. Yet there are also important open access resources, the commons

that are the habitat of communities of species.13 We therefore proceed by distinguishing

9In view of (1) and (2) ρ is the costate variable associated to r and γ is the costate variable associated

to the state variable s.
10To simplify the exposition we assume in Table 1 that in the solution the variables yr1, yi1, yf1, yc1 and

zi1 (for i = 1, . . . , ī) take on nonzero values for all t. The correct reading of the qualifiers ”all i” etc. in

Table 1 is that the equation preceding such a qualifier holds for all variables xi whose solution values are

nonzero.
11The economic interpretation of the efficiency rules listed in Table 1 is left to the reader. For some

discussion in a similar context see Eichner and Pethig (2006).
12The proof of all propositions is delegated to the Appendix.
13Moreover, in many developing countries natural resources are de facto free access resources because

existing property rights are poorly or not at all enforced.
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First-order conditions for a

No. social optimum general equilibrium with general equilibrium with

open access habitat privately owned habitat

1
Ryrg

Ryr1

= αyg

αy1

all g
Ryrg

Ryr1

= pyg

py1

all g
Ryrg

Ryr1

= pyg

py1

all g

2 αvi = αyg

Hi
yig

+ αzi all i, any g phi = pyg

Hi
yig

+ θhi all i, any g phi = pyg

Hi
yig

+ πzi all i, any g

3
Hi

yig

Hi
yi1

= αyg

αy1

all i, all g
Hi

yig

Hi
yi1

= pyg

py1

all i, all g
Hi

yig

Hi
yi1

= pyg

py1

all i, all g

4
Fhfi

Fyf1

= αvi

αy1

all i
Fhfi

Fyf1

= phi

py1

all i
Fhfi

Fyf1

= phi

py1

all i

5
Frf

Fyf1

= αr

αy1

Frf

Fyf1

= pr

py1

Frf

Fyf1

= pr

py1

6
Uycg

Uyc1

= αyg

αy1

all g
Uycg

Uyc1

= pyg

py1

all g
Uycg

Uyc1

= pyg

py1

all g

7
Bi

zij

Bi
zi1

=
αzj

αz1

all i, all j
Bi

zij

Bi
zi1

=
πzj

πz1

all i, all j
Bi

zij

Bi
zi1

=
πzj

πz1

all i, all j

8
Bi

si

Bi
zi1

= αs

αz1

all i
Bi

si

Bi
zi1

= πs

πz1

all i
Bi

si

Bi
zi1

= πs

πz1

all i

9a ρ̇− γ̇ = (ρ− γ) (δ −Rr) − αr −
∑

k Uqck
Qk

r + αs, ρ̇r = ρr (δ −Rr) − pr + θr, ρ̇r − γ̇r = (ρr − γr) (δ −Rr) − pr + θr + ps + θs,

9b ρ− γ = αyg

Ryrg
ρr = pyg

Ryrg
ρr − γr = pyg

Ryrg

10 β̇i = βi (δ − bi) −
∑

k Uqck
Qk

ni
−

αygHi
ni

Hi
yig

− ψ̇i = ψi (δ − bi) − θni −
pygHi

ni

Hi
yig

+αssi +
∑

i αzjzij +πssi +
∑

i πzjzij

11
Uqck

Uyc1

=
αc

qk

αy1

all k
Uqck

Uyc1

=
λqk

py1

all k
Uqck

Uyc1

=
λqk

py1

all k

Table 1: Characterization of optimum and equilibrium allocations in the IEES
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two alternative scenarios of economic agents’ property rights with respect to land and its

uses: private ownership and open access.

Explaining the allocation in the ecosystem by means of the competitive mechanism14

also requires to implicitly defining property rights in the ecosystem: each organism will be

assumed to ’own’ its own biomass and a share of the habitat resource endowment (sunlight,

water, nutrients).15 All organisms will then be treated analogous to economic consumers

paying for purchased habitat services and prey biomass by their endowment income and

their income earned by selling own biomass. Although this approach clearly is an export

of conventional economic methodology, Christiaans et al. (2006) link it to the ecological

literature and elaborate in some detail its plausible and - in our view - convincing ecological

interpretations.

In the following subsection 4.1 the competitive mechanism for the ecosystem is for-

mally defined and explained for predetermined human biomass harvesting and economic

land use. After that the conventional competitive mechanism is introduced for the econ-

omy. Subsection 4.2 considers the case of an economy facing an open access habitat implying

that biomass harvesting and land conversion is ’free of charge’ (though subject to produc-

tion costs). In subsection 4.3 the economy faces an ecosystem with the habitat and the

economic land being privately owned such that all land uses and biomass harvesting are

marketed activities.

4.1 The competitive mechanism in the ecosystem

In this subsection we specify the allocation mechanism in the ecosystem. Following Christi-

aans et al. (2006) we assume that at each point in time the allocation of land and biomasses

is determined in the ecosystem by a mechanism that works as if these goods were traded

on competitive markets by all organisms which are supposed to behave as if they maxi-

mize their net offspring subject to some transactions constraint. More specifically, denote

by πs ∈ R+ the ecosystem price of land and by π⊤

z := (πz1, . . . , πzī) ∈ R
ī
+ the ecosystem

prices for all species’ biomass.16 For notational relief, we write π := (πz, πs) and we de-

14Tschirhart (2000, 2003) forcefully pleads for applying general equilibrium analysis to the ecosystem

but he emphasizes, at the same time, that there are important differences between a general equilibrium

ecosystem allocation mechanism and the (economic) competitive mechanism.
15An alternative modeling approach suggested by Pethig and Tschirhart (2001) is to assume free access

to the habitat resources for all organisms.
16These prices are meant to be scarcity indicators as perceived by the organisms. To avoid clumsy

wording we call them prices, nonetheless, and refer to ’ecosystem markets’ although there exist neither a

currency nor institutionalized markets in the ecosystem. Interestingly, these features are also missing in
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note by K the function describing an entire time path of the (possibly multidimensional)

variable k. In other words, the functional sign K is supposed to convey the information

kt = K(t) for all t ∈ [0,∞[. For example, Π = (Πz,Πs) describes specific time paths of

prices πt := (πzt, πst) such that πt = Π(t), πzt = Π
z(t) and πst = Π

s(t).17 With this

notation for given Π, H and R, and at each point in time organism i = 1, . . . , ī solves

max
(si,zi)

Bi (si, zi) s.t. πs (ωi − si) ≥ π⊤

z · (zi + hi) , (16)

where h⊤

i := (hi1, . . . , hij, . . . , hīi) ∈ R
ī
+ with hij ≡ 0 for i 6= j and hii ≡ hi/ni and where

ωi = ωi (s,n) :=
σis

∑

j σjnj

∈ R+ (17)

is organism i’s endowment of or entitlement to habitat services. In (17), (σ1, . . . , σī)
⊤ ∈ R

ī
+

is a set of constant weights. By definition of ωi (·) it is true that
∑

j njωj (·) = s which

gives rise to the interesting interpretation that the habitat is owned by all organisms.18

To interpret (16) and (17) consider the simple case of an organism i that is preyed

upon and that preys itself on some species j 6= i and the habitat resource, s. Consequently

the constraint in (16) now reads

πsωi + πzi

[

(−zii) −
hi

ni

]

≥ πssi + πzjzij. (16’)

The left side of (16’) gives us the organism’s total disposable income, the exogenous ’en-

dowment income, πsωi, and the value of its sacrifice of own biomass to ecosystem predators,

−πzizii ≥ 0. This sacrifice is the analogue of the consumer’s labor income, and the amount

of own biomass harvested by humans, hi/ni, corresponds to a tax on labor income. The

organism spends its total income on nutrients, si, and on prey biomass, zij, at prevailing

prices. To get a better understanding of the ecological rationale of (16’) suppose first that

zii = hi = 0. The organism i is able to buy a bundle (si, zij) worth up to πsωi without

being forced to sacrifice own biomass.19 Note that the consumption bundles (si, zij) that

the standard general equilibrium model of the neoclassical economy.
17Putting up with a slight misuse of notation in favor of simplicity we will denote by R, H and Q the

functions determining time paths of converted land, harvested biomass and ecosystem services, respectively,

although these functions differ from the functions R, Hi and Q in (1), (5) and (8).
18See also Christiaans et al. (2006). Note, however, that organism i’s income from its entitlement to

habitat services, πsωi (s,n), is subject to endogenous price changes while in Christiaans et al. (2006) that

income is assumed to be ’exogenous’ (implying that the pertinent functions of biomass supply and demand

are not homogeneous of degree zero in prices).
19Since top predators do not sacrifice own biomass they live entirely on their - supposedly large - endow-

ment income. More generally, the higher species i’s trophic level the greater tends to be its endowment ωi

which is therefore connotative to the notion of the species ’predation power’.
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can be purchased from the endowment income depend on the values of πs, n1, . . . , nī, hi

and πzj that prevail in the short-run period under consideration.

On the other hand, if we assume ωi = hi = 0 for expository purposes it is obvious

that in case of positive prices πs and πzj organism i cannot take up any nutrient or prey

biomass unless it is prepared to sacrifice some of its own biomass. The underlying reason

is that during preying or foraging organism i exposes itself to its predators and the more

nutrients or prey biomass organism i demands the greater is the risk of being devoured and

the more own biomass has to be sacrificed. The risk of being preyed upon while preying

is known as the predation risk in the ecological literature (see Lima and Dik 1990) and

motivates (16’).

Our preceding comments on (16’) imply that when we now allow all variables in

(16’) to be nonzero, organism i will certainly (first) take advantage of its option of risk-

free foraging but it may also find it optimal to further increase its intake of nutrients and

prey biomass being fully aware that more cannot be obtained without sacrificing some own

biomass.

In this setup, we now define a competitive general ecological equilibrium as follows:

For any given time paths of human biomass harvesting, H, and economic land use, R,

a general ecological equilibrium is constituted by prices Π and an ecological allocation

Am :=
(

S1, . . . ,Sī,Z1, . . . ,Zī,Q,N
)

such that the solutions to all instantaneous optimiza-

tion programs (16) for H and R coincide with Am and the resource constraints (13) and

(14) hold.

The general ecological equilibrium is a state where all ecosystem markets clear at each

point in time and where no price-taking organism is able to increase its net offspring. To

show in a more explicit way that the general ecological equilibrium consists of a sequence of

short-run (or rather: instantaneous) equilibria recall that at each point in time some vector

v := (h,n, r) is given. Denote by

Si (π, hii,ni, s) and Zij (π, hii,ni, s) (18)

organism i’s demands and supplies determined by solving (16) when prices are π := (πs,πz).

Invoke (13) and (14) and solve the equations

s =
∑

i

niS
i (π, hii,ni, s) and

∑

j

njZ̃
ji (π, hii,ni, s) + hi = 0 (all i)

for the ecosystem prices π∗. These prices π∗ clearly depend on v and we therefore obtain the

short-run equilibrium demands and supplies as functions of v, say Si (v) and Zi (v), which

determine the equilibrium net offspring Bi
[
Si (v) ,Zi (v)

]
, in turn. When the equilibrium
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net offspring is combined with (4) we obtain the system of population growth functions20

ṅi = niB
i
[
Si (v) ,Zi (v)

]
(all i). (19)

We have thus demonstrated that for given H and R the time path of ecological equi-

librium allocations, Am, fully determines the development of all populations over time:

N =
(

N1, . . . ,Nī
)

.

4.2 The competitive mechanism in the IEES with an open access

habitat

First we briefly describe the competitive market economy facing an open access habitat. In

that rather standard economy there are markets for all commodities, for the biomass har-

vested and for economic land. The corresponding market prices are p⊤

y := (py1, . . . , pyḡ) ∈

R
ḡ
+, p⊤

h := (ph1, . . . , phī) ∈ R
ī
+ and pr ∈ R+. In addition, we introduce taxes on harvested

biomass, θ⊤

h := (θh1, . . . , θhī) ∈ R
ī, on economic land, θr ∈ R, and subsidies on habitat,

θs ∈ R, and on populations θ⊤

n := (θn1, . . . , θnī) ∈ R
ī. The optimal plans of the economic

agents are specified as follows:

• For given P, Θ
r and an initial stock of economic land, r0, the land conversion firm

solves:

max
(R,Yr)

∫
∞

0

e−δt
[
(pr − θr)r − p⊤

y · yr

]
dt s.t. (1). (20)

• For given P, Θ
h and N the harvesting firm solves

max
(H,Y1,...,Yī)

∫
∞

0

e−δt
∑

i

[
(phi − θhi)hi − p⊤

y · yi

]
dt s.t. (5). (21)

• For given P the production firm solves

max
(Hf ,Rf ,Yf)

∫
∞

0

e−δt
[
p⊤

y · yf − p⊤

h · hf − prrf

]
dt s.t. (6). (22)

• For given P and Q the representative consumer solves

max
(Yc,Qc)

∫
∞

0

e−δtU (qc,yc) dt s.t. p⊤

y · yc ≤ w and q ≥ qc, (23)

where w are lumpsum payments of profits and government transfers treated as constant

by the consumers.

20Classical bioeconomic harvesting models typically assume rather than derive population growth func-

tions of the type ṅi = N̂ i (n)−hi for all i. The functions N i in (19) differ from the functions N̂ i in several

important aspects: N i
hi

< 0 but N i
hi

6= −1 (in general) versus N̂ i
hi

= −1; N i
hj

6= 0 (in general) versus

N̂ i
hj

= 0; N i
r > 0 (in general) versus N̂ i

r = 0.

12



In (20) - (23) all agents are modeled as non-myopic dynamic optimizers although the con-

version firm is the only agent whose intertemporal plan is non-trivial. As an implication of

the open-access assumption there are no markets for the biomass in situ and land available

for conversion (i.e. the habitat).21 As a consequence the habitat and in situ biomass can be

appropriated for free (rule of capture) by the land converting firm and the harvesting firm.

Nonetheless, these firms will sell their output to the production firm at a positive price to

cover their marginal costs.22

Note also that all economic agents’ plans (20) - (23) are directly or indirectly linked

to ecological variables: The land converting firm and the harvesting firm take land and

biomass, respectively, from nonhuman species; the production firm transforms economic

land and harvested biomass into consumer goods; and consumers rely on ecosystem services.

Having completed the description of the market economy we now define the compet-

itive general equilibrium of the economy facing an open access habitat:

For any given time paths of ecosystem services, Q, species populations, N and taxes Θ a

general equilibrium of the economy facing an open access habitat is constituted by prices P

and by an economic allocation Ay :=
(
H,Hf ,Qc,R,Rf ,Yc,Yf ,Yr,Y1, . . . ,Yḡ

)
such that

• the solutions to the optimization programs (20) - (23) for Q, N and Θ coincide with

Ay and

• the resource constraints (9) - (12) are satisfied.

That general equilibrium is a state where all markets are cleared at each point in time and

where no price-taking agent is able to improve upon their well-being as specified by their

respective objective functions. From the perspective of the IEES with open access habitat

this equilibrium is partial, however, since it is conditional on predetermined Q, N and Θ.

The economic activities of land use and harvesting implied by that economic equilibrium

may not be consistent with the given time paths Q, N and Θ on which that equilibrium

has been conditioned.

So far we have introduced the concept of general equilibrium for each subsystem. Yet

these subsystem equilibria are conditioned on variables determined in the other subsystem.

The concept of competitive general equilibrium of the (entire) IEES with open access habitat

needs to account for these interdependencies:

21The introduction of exclusive property rights for land would not matter as long as the habitat is

worthless for the owner. But it will be shown in the next subsection that an owner of the habitat will be

able to sell the right to harvest biomass.
22One can easily verify that if there were no costs of harvesting and land conversion and no corrective

regulation, economic agents as they are modeled here would destroy the habitat and all nonhuman species.
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For any predetermined time path of taxes, Θ (including the case Θ(t) = 0 for all t) a

general equilibrium of the IEES with open access habitat, [(P,Ay) , (Π,Am)], prevails, if

(P,Ay) is a general equilibrium of the economy facing an open access habitat relative to Q

and N and if (Π,Am) is a general ecosystem equilibrium relative to H and R.

To better understand the structure of the general equilibrium of the IEES with open

access habitat consider a fancy hybrid Cournot-Nash game of two Walrasian auctioneers one

for each submodel. For given Θ their strategies are (P,Ay) and (Π,Am), respectively, and

they attain their maximum payoff by choosing market-clearing prices in their respective

submodel. Although we do not intend to formalize this ’super game’ we find it useful

because it highlights the existence of different and disconnected price mechanisms (reflecting

decentralized decision making) in both subsystems.

The next step is to determine the first-order conditions characterizing the general

equilibrium of the IEES. The Hamiltonians and Lagrangeans associated to the individual

optimization programs (16) and (20) - (23) are:

Lr = (pr − θr)r − p⊤

y · yr + ρrR (r,yr) , (20’)

Lh =
∑

i

[
(phi − θhi)hi − p⊤

y · yi

]
+
∑

i

λhi

[
H i (ni,yi) − hi

]
, (21’)

Ly = p⊤

y · yf − p⊤

h · hf − prrf + λfF
(
hf , rf ,yf

)
, (22’)

Lc = U (qc,yc) + λ⊤

q · (q − qc) + λc(w − p⊤

y · yc), (23’)

Li = Bi (si, zi) + λi

[
πs (ωi − si) − π⊤

z · (hi + zi)
]
. (24’)

The relevant implications of the first-order conditions of solving (20’) - (24’) are listed in

the second column of Table 1. With that information we now address the question whether

an efficient allocation of IEES can be sustained as a general equilibrium of the IEES with

open access habitat supported by suitable taxes.

Our finding is made precise in

Proposition 2.

If the function U is quasi-concave and the functions Bi (all i), F , H i (all i), Qk (all k), R

are concave, there exists a distribution of profit shares and lumpsum transfers to consumers

such that [(P,Ay) , (Π,Am)] is an efficient general equilibrium of the IEES with open access

habitat, if and only if for all t prices and tax rates are assigned the values

• phi = αvi (all i), pr = αr, pyg = αyg (all g) (economic prices),

• πzi = αzi > 0 (all i), πs = αs (ecosystem prices),
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• θr = πs −
∑

k

pygUqck
Qk

r

Uycg
> 0 (any g), θhi = πzi > 0 (all i) (tax rates) .

With its specific assignment of prices and tax rates Proposition 2 is a decentralization result

in the flavor of the second theorem of welfare economics. Yet Proposition 2 is not a full-

blown generalization of that theorem from neoclassical economic models to the IEES for the

following reason. The second theorem of welfare economics states, essentially, that every

efficient allocation of the economy can be decentralized by prices provided the consumers’

endowments and profit shares are specified and consumers receive appropriate redistribu-

tive (positive or negative) lumpsum transfers. This lumpsum redistribution is a necessary

qualifier because the social planner ignores endowments and transfers in both the IEES

(as evident from (15)) and the neoclassical economy. In both models lumpsum transfers

to consumers are feasible. But one would also need to redistribute the organisms’ endow-

ments (17) to be able to decentralize each and every solution of (15). Yet, the redistribution

of these endowments is not at the social planner’s disposal because these endowments are

meant to be intrinsic attributes of the organisms. This is why the second theorem of welfare

economics cannot be fully extended from models of the economy to the IEES.

Proposition 2 implies that laissez-faire equilibria (defined by θr = θhi ≡ 0) are inef-

ficient. There are three reasons for this inefficieny: (i) wrong economic price signals for

land, (ii) wrong economic price signals for biomass and (iii) a non-internalized consumptive

ecosystem services externality.23 Since efficiency requires positive tax rates the economic

prices for land and biomass tend to be too low in the laissez-faire regime and therefore

economic land and harvested biomass tend to be overprovided.24 In the case of biomass,

the efficient tax rate is a markup on the economic biomass price equal to the ecosystem

price of that biomass implying that in laissez-faire economic agents fail to account for the

scarcity of biomass in the ecosystem. In the case of land conversion an analogous argument

applies but now another markup on economic land is necessary to internalize the ecosystem

services externality, −
∑

k

pygUqck
Qk

r

Uycg
.

Although it is a valid conclusion from Proposition 2 that general equilibria of the

IEES are inefficient, in general, if the tax rates Θ are arbitrarily chosen (e.g. with their

laissez-faire values Θ = 0), it remains the question whether such equilibria exist. This

question is answered in

23The model contains another two (potential) stock externalities, namely Rr > 0 in (1) and Hi
ni

> 0

in (5). These externalities are internalized, however, in our economy submodel owing to our simplifying

assumption that there is only a single land conversion firm and a single harvesting firm.
24It is not easy to make this observation rigorous, however, because it compares two different, highly

complex general equilibrium allocations.
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Proposition 3.

Suppose the function U is quasi-concave and the functions Bi (all i), F , H i (all i), Qk (all

k), R are concave. There is a set Ω of time paths of taxes Θ such that there exists a general

equilibrium of the IEES with open access habitat for predetermined Θ if and only if Θ ∈ Ω.

4.3 The competitive mechanism in the IEES with privately owned

habitat

In this subsection we turn to an economy with private ownership of land. We assume

that the land conversion firm owns all land, the habitat as well as the economic land. It

offers the economic land to the production firm at price pr ∈ R+ and it offers the right to

harvest biomass in the habitat at price ps ∈ R+ per unit of land to the harvesting firm.

The conversion firm’s strategy to convert habitat into economic land or vice versa depends

on the relative profitability of both kinds of land uses. Having full information about the

ecosystem dynamics that we described in subsection 4.1 the harvesting firm is assumed to

take into account the impact of her harvesting activities on population growth.

While the optimal plans of the consumer and the producer remain as in (22) and (23),

the optimal plans of the land conversion firm and the harvesting firm are now given by:

• For given P, Θ
r, Θ

s and an initial stock of economic land, r0, the land conversion

firm solves:

max
(R,S,Yr)

∫
∞

0

e−δt
[
(pr − θr)r + (ps + θs)s− p⊤

y · yr

]
dt s.t. (1), (2). (24)

• For given P, Θ
n and initial stocks of populations ni0 the harvesting firm solves

max
(H,Y1,...,Yī,N,S1,...,Sī,Z1,...,Zī,Π)

∫
∞

0

e−δt

[
∑

i

(phihi + θnini) − pss− p⊤

y · yi

]

dt

s.t. (3), (4), (5), (18). (25)

A closer look at (25) shows that the organisms’ demand and supply functions (18), the

net offspring function (4) and the population dynamics (5) are constraints and that the

ecosystem prices are decision variables in the harvesting firm’s program of maximizing

of present value profits. The harvesting firm respects and accounts for the optimizing

behavior of all organisms as well as the ecosystem law of eating and being eaten. Unlike

ranchers who feed their lifestock and shelter it against predators the harvesting firm in the

present model chooses its optimal intertemporal harvesting strategy by taking all ’natural’

ecosystem interactions into account. It thus differs greatly from the social planner who
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calculates the solution to (15) and then assigns a consumption, production and feeding

program, respectively, to the consumers, producers and organisms without any regard to

’autonomous’ optimizing behavior of individual agents. The harvesting firm is modelled

here as a Stackelberg leader with the organisms being Stackelberg followers. It accounts for

the organism’s "reaction functions" (here demand and supply functions (18)) inducing the

organisms to choose the ecological allocation implied by (16).25

Having specified the economic agents optimization programs we are now in the posi-

tion to define the competitive general equilibrium of the IEES with privately owned habitat:26

For any given time path of ecosystem services Q and taxes Θ (including the case Θ(t) = 0

for all t) a general equilibrium of the private ownership IEES is constituted by prices (P,Π)

and an allocation (Am,Ay) such that

• the solutions to the optimization programs (22) - (25) for Q and Θ, coincide with

(Ay,Am) and

• the resource constraints (9) - (14) are satisfied.

Following the procedure of the last subsection we solve the Hamiltoneans and Lagrangeans

(22’), (23’) and

Lr = (pr − θr)r + (ps + θs)s− p⊤

y · yr + (ρr − γr)R (r,yr) , (20”)

Lh =
∑

i

phihi − pss− p⊤

y · yi +
∑

i

θnini +
∑

i

λhi

[
H i (ni,yi) − hi

]

+
∑

i

ψiniB
i (si, zi) +

∑

i

λsini

[
Si (π, hii,n, s) − si

]

+
∑

j

∑

i

λzijni

[
Zij (π, hii,n, s) − zij

]
(21”)

and obtain the first-order conditions listed in the third column of Table 1.27 The efficiency

implications are summarized in

Proposition 4.

If the function U is quasi-concave and the functions Bi (all i), F , H i (all i), Qk (all k), R

25Obviously, the informational requirements on the part of the harvesting firm of solving (25) are ex-

tremely demanding which characterizes that procedure as a polar case. An opposite polar case has been

modeled in the previous subsection since under open access the ecosystem dynamics have been no part

of any economic agent’s optimization calculus. In the scenario of private habitat ownership incomplete

information on the complex ecosystem dynamics would appear to be realistic. Yet an analysis of decision

making under uncertainty is beyond the scope of the present paper.
26When the habitat is privately owned the equilibrium of the IEES cannot be decomposed anymore into

equilibria of its subsystems.
27The derivation of rows 2, 3, 7, 8 and 10 in column 3 can be found in the Appendix.
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are concave, there exists a distribution of profit shares and lumpsum transfers to consumers

such that [(P,Ay) , (Π,Am)] is an efficient general equilibrium of IEES with privately owned

habitat, if and only if for all t prices and tax rates are assigned the values

• phi = αvi (all i), pr = αr, ps = αs, pyg = αyg (all g) (economic prices),

• πzi = αzi > 0 (all i), πs = αs (ecosystem prices),

• θr [or θs] = −
∑

k

pygUqck
Qk

r

Uycg
> 0 (any g), θni =

∑

k

pygUqck
Qk

ni

Uycg
> 0 (all i, any g)

(tax rates, subsidies) .

As in the IEES with open access habitat the laissez-faire equilibria (θr = θs = θni = 0)

of the IEES with privately owned habitat are inefficient, too. While the price signals

for biomass are now right there remain two sources for inefficiency: (i) a non-internalized

ecosystem service externality of habitat, (ii) non-internalized ecosystem service externalities

of populations. In the laissez-faire equilibrium allocation the habitat and the populations

tend to be too small. These inefficiencies can be corrected by subsidizing the habitat and

the populations. Obviously, instead of inducing the land conversion firm to extend the

habitat through a subsidy the government could also tax economic land thus providing an

incentive for the land conversion firm to convert less land. Comparing Propositions 2 and

4 elucidates that under both scenarios the government could levy a tax on economic land

but under open access the land tax corrects for ecosystem service externalities and for the

ecosystem price of land, πs, whereas the latter emerges in the private ownership economy

in form of the habitat price ps = πs paid by the harvesting firm. Finally, it is interesting

to observe that in the economy facing a privately owned habitat population subsidies are

applied whereas in the economy facing an open access habitat harvesting taxes are needed to

implement the efficient allocation. Hence under different property rights scenarios different

corrective policy instruments are called for. Finally, the existence issue is addressed in

Proposition 5.

Suppose the function U is quasi-concave and the functions Bi (all i), F , H i (all i), Qk

(all k), R are concave. There is a set Υ of time paths of taxes Θ such that there exists

a general equilibrium of the IEES with privately owned habitat for predetermined Θ if and

only if Θ ∈ Υ.

5 The value of the ecosystem and its components

In the remainder of the paper we will determine resource prices and/or values along the

efficient path that has been characterized in Table 1 combined with the Propositions 2
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and 4, respectively. We will use the pertaining marginal efficiency conditions for valuing

the components of the ecosystem with a special emphasis on the role and interplay of

ecosystem prices and economic prices. Exploiting that information in a systematic way

will prove the present approach to be a powerful basis for putting price tags on ecosystem

components. The reason is not only because the information our microfounded general-

equilibrium approach to the ecosystem provides on scarcities or (shadow) prices in the

ecosystem is much richer than that in conventional macro-level models of population ecology

but also because the submodel ecosystem is here tied to a general-equilibrium economy

and its economic prices in a rigorous and consistent way. Observe also that the following

valuation exercises do not depend on the property rights regime of the habitat since the

focus is on efficient allocations. Either scenario is covered when the appropriate efficiency-

restoring taxes are accounted for that have been specified in the Propositions 2 and 4,

respectively.

Proposition 6.

(i) In an efficient general equilibrium of the IEES

• the economic price of biomass of species i is

phi = πzi +
pyg

H i
yig

︸︷︷︸

[1]

all i, any g, (26)

• the economic price of land services is

pr = πs −
∑

k

pygUqck
Qk

r

Uycg

︸ ︷︷ ︸

[2]

+
pyg

Ryrg

[

δ −
˙(
pyg

Ryrg

)
Ryrg

pyg

]

︸ ︷︷ ︸

[3]

−
pygRr

Ryrg
︸ ︷︷ ︸

[4]

any g. (27)

(ii) In a steady state of the efficient general equilibrium of the IEES

• the price of (a living organism of) species i is

β∗

i =
1

δ









∑

k

p∗ygUqck
Qk

ni

Uycg

︸ ︷︷ ︸

[5]

−π∗

sωi
︸︷︷︸

[6]

+
ε(hi, ni)(p

∗

hi − π∗

zi)hi

ni
︸ ︷︷ ︸

[7]

+
π∗

zihi

ni
︸ ︷︷ ︸

[8]









any g, (28)

where ε(hi, ni) := niH
i
ni
/hi > 0;
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• the price of (a unit of) economic land is

ρ∗ =
1

δ −Rr









p∗r −
π∗

sRr

δ
+
∑

k

p∗ygUqck
Qk

r

Uycg

︸ ︷︷ ︸

[2]









any g, (29)

• the price of (a unit of) habitat is

γ∗ =
πs

δ
. (30)

To capture the essence of (26) recall that ’harvesting’ of prey biomass by predators in the

ecosystem is costless whereas human predators incur positive marginal harvesting costs [1].

With zero marginal costs of harvesting, i.e. with H i
yig

→ ∞, (26) yields phi = πzi. Hence

efficiency requires the biomass price of all species i to be the same in both submodels for all

species i that are harvested unless asymmetric conditions in both markets warrant a price

difference. Although (27) looks much more complex than (26), the same argument applies

for the prices of land services in both subsystems. In [4] the stock externality Rr < 0

increases the marginal conversion costs, pyg/Ryrg
, that are positive in the economy but

have no equivalent in the ecosystem. To rule out marginal conversion costs as a cause of

divergence suppose that Ryrg
→ ∞. This assumption eliminates [4] as well as the dynamic

marginal costs [3]. The remaining factor [2] that renders different the efficient land prices in

both submodels represents the external marginal costs generated by the ecosystem services

externality which exists in the economy but has no counterpart in the ecosystem. In fact,

if that externality is ’switched off’ (for the sake of the argument) by setting Uqck
≡ 0,

then (27) is turned into pr = πs. In other words, efficiency requires land services to be

uniformly priced in both subsystems unless these subsystems exhibit differences in internal

and external marginal costs.

Dynamic marginal land conversion costs [3] accrue in the economy but not in the

ecosystem because humans determine the size of habitat unilaterally and the land conversion

firm controls for the time path of economic land use. The dynamic marginal costs comprise

two components. δpyg

Ryg
reflects that increasing land conversion diminishes the available land

stock. −
˙(

pyg

Ryg

)

captures the costs of keeping land in stock. If
˙(

pyg

Ryg

)

> 0, the market value

of economic land increases and the land converting firm will keep the land in stock. If
˙(

pyg

Ryg

)

< 0 the market value of the stock decreases and it may be expensive not to convert

land in good time.

β∗

i from (28) is the price of a living organism i in the long-run equilibrium that is made

up of the present value of the components [5] - [8]. The term [5] represents the external
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benefits of the marginal organism i in form of enhancing the provision of public ecosystem

services; [7] is the marginal benefit of the stock externality H i
ni
> 0; [8] gives us the value

of organism i’s biomass loss due to harvesting. The value β∗

i is reduced by the value of

organism i’s land endowment [6] which represents the opportunity costs of economic land

use.

In (29), ρ∗ is the efficient steady state price of economic land. It equals the present

value of the price of economic land services, p∗r/(δ − Rr), (where the relevant discount

rate is not δ but (δ − Rr) > δ) reduced by two corrective factors: the present value of the

opportunity costs of the stock externality,π∗

sRr/δ(δ−Rr), and the present value of the term

[2] that has already been described above. Finally, the price γ∗ of the habitat is simply the

present value of the ecosystem price for land.

Based on Proposition 6 (ii) we are able to calculate the value of the ecosystem in an

efficient steady state. The total value of all species is

∑

i

β∗

i ni =
1

δ









∑

i

∑

k

p∗ygUqck
Qk

ni

Uycg
ni

︸ ︷︷ ︸

[9]

− π∗

ss
︸︷︷︸

[10]

+
∑

i

ε(hi, ni)(p
∗

hi − π∗

zi)hi

︸ ︷︷ ︸

[11]

+
∑

i

π∗

zihi

︸ ︷︷ ︸

[12]









. (31)

That value is composed of

• the species’ contribution to the aggregate marginal benefits of public ecosystem services

[9] minus

• the total value (at the ecosystem price of land services) of the habitat [10] plus

• the aggregate value of all stock externalities in harvesting [11] plus

• the total value (at ecosystem prices) of all biomass harvested by humans [12].

From (29) - (31) it is straightforward to compute the total value of the ecosystem in an

efficient steady state as28

∑

i

β∗

i ni + γ∗s =
1

δ

[
∑

i

∑

k

p∗ygUqck
Qk

ni

Uycg
ni

+
∑

i

ε(hi, ni)(p
∗

hi − π∗

zi)hi +
∑

i

π∗

zihi

]

(32)

and the value of the entire stock of land as

ρ∗r + γ∗s =
1

δ −Rr









p∗rr
︸︷︷︸

[13]

+π∗

ss

(

1 −
(s− r)Rr

δs

)

+
∑

k

p∗ygUqck
Qk

r

Uycg

r

︸ ︷︷ ︸

[14]









. (33)

28Our expression (32) provides a theoretical underpinning of Constanza et al. (1997)’s empirical valuation

of the world’s ecosystem services.
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It is interesting to observe that the value of habitat [10] cancels out when deriving the

value of the ecosystem (32). Suppressing stock externalities, formally Hni
= Rr ≡ 0, the

formulas (32) and (33) have straightforward and appealing interpretations. The value of

the ecosystem then consists of the benefits from ecosystem services [9] and from the value

of biomass harvested [12]. The value of the entire stock of land is then composed of the

value of economic land services [13] plus the value of habitat [10] minus the external cost

of economic land use [14].

6 Concluding remarks

The main purpose of the present paper is methodological and conceptual but it aims, at

the same time, to demonstrate that the application of a general-equilibrium competitive

allocation mechanism to a microfounded integrated ecological-economic system yields spe-

cific and new insight with regard to efficient pricing of the ecosystem and its services. The

ecosystem and the economy are designed as interdependent submodels and the focus is on

intra-system interactions of individuals as well as on inter-system repercussions of these

interactions. Both submodels are characterized by resource scarcity and a decentralized

and uncoordinated mode of allocating resources. The competitive mechanism therefore ap-

pears to be an appropriate methodological device to ’coordinate’ the activities of optimizing

agents through prices. For economists, the ultimate way of assessing scarcity and value is

to put a price tag on the items under consideration. On the conceptual level we have shown

that our approach generates such prices in both submodels, and that it is able to determine

and compare the prices of goods, namely land services and biomass, that are traded in both

subsystems on competitive but disconnected markets.

As in other studies, in our analysis the source of inefficiencies remains, of course, the

". . . interplay of properly defined property rights, externalities and market failure" (Brown

2000, p. 875). The existence of exclusive property rights for the habitat or their absence

also plays a similar role in that context as in conventional studies. Yet our approach allows

a fresh diagnosis by linking ecosystem prices and economic prices as well as ecosystem prices

and the rates of corrective taxes. In the laissez-faire equilibrium of the IEES with open

access habitat economic agents disregard the ecosystem prices of land and biomass (as they

disregard other non-market spillovers) which calls for corrective regulation. We have shown

that there are taxes on economic land use and taxes on harvested biomass that are capable

to restore efficiency. Quantity (rather than price) regulation clearly is an alternative way

toward allocative efficiency being applied in practice in form of harvesting quotas, land use

restrictions, land zoning etc.
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Although the paper does not focus on applied techniques of valuating ecosystem com-

ponents, our approach has the potential to serve as a basis for a new kind of applied general

equilibrium analyses. By now, such analyses have become a standard tool for simulating

the incidence of economic policies with significant ramifications in many economic markets.

With appropriate parametrizations and calibrations of both the economic and the ecosys-

tem submodel29 one would be able to run numerical simulations in a large-scale IEES to

gauge the quantitative impact on the whole system of alternative policies of biomass har-

vesting and economic land use. Such applications would generate numerical information on

ecosystem prices and values that would be an important input in designing efficient natural

resource policies.
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Appendix

Proof of Proposition 1:

Proposition 1 follows from applying Theorem 11 in Seierstad and Sydsæter (1987, chapter

6, p. 385). We refrain from tracing the requirements of that Theorem 11 in all detail.

However, the main substantive conditions are listed in Proposition 1. �

Derivation of rows 2, 3, 7, 8 and 10 in column 3 of Table 1:

The first-order conditions for the harvesting firm’s problem (21”) are

Lh
hi

= phi − λhi + λsiS
i
hii

+
∑

j

λzijZ
ij
hii

= 0, (34a)

Lh
s = −ps +

∑

i

λsiniS
i
s +
∑

j

∑

i

λzijniZ
ij
s = 0, (34b)

Lh
yig

= −pyg + λhiH
i
yig

= 0, (34c)

Lh
zij

= ψiniB
i
zij

− λzijni = 0, (34d)

Lh
si

= ψiniB
i
si
− λsini = 0, (34e)

Lh
πzi

=
∑

j

λsjnjS
j
πzi

+
∑

k

∑

j

λzjknjZ
jk
πzi

= 0, (34f)

Lh
πs

=
∑

j

λsjnjS
j
πs

+
∑

k

∑

j

λzjknjZ
jk
πs

= 0, (34g)

ψ̇i = (δ − bi)ψi − λhiH
i
ni
− θni −

∑

j

λsjnjS
j
ni
−
∑

j

∑

k

λzjknjZ
jk
ni
. (34h)

Equations (34c)-(34f) can be rearranged to

H i
yig

H i
yi1

=
pyg

py1

, (35)

Bi
zij

Bi
zi1

=
λzij

λzi1

, (36)

Bi
si

Bi
zi1

=
λsi

λzi1

. (37)

Solving the organism i’s optimization problem (16) we obtain

Bi
zij

Bi
zi1

=
πzj

πz1

, (38)

Bi
si

Bi
zi1

=
πs

πz1

. (39)
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From (36)-(37) and (38)-(39) we infer

λzij

λzi1

=
πzj

πz1

and
λsi

λzi1

=
πs

πz1

∀i. (40)

Taking into account that both at the social optimum and in the market we can choose

biomass of species 1 as numeraire (λzi1 = πz1 ≡ 1) establishes λzij = πzj and λsi = πs for all

i. Next, we use the species budget constraint πs(ωi − si) =
∑

j πzjzij + πzihii, the demand

and supply functions Si (π, hii,ni, s), Z
ij (π, hii,ni, s) and the definition of the endowments

ωi := σis

j σjnj
to obtain

πsσis
∑

j σjnj

− πsS
i (π, hii,ni, s) −

∑

j

πzjZ
ij (π, hii,ni, s) − πzihii = 0. (41)

Multiply equation (41) by ni and sum over i yields

A := πss−
∑

i

πsniS
i (π, hii,ni, s) −

∑

j

∑

i

niπzjZ
ij (π, hii,ni, s) −

∑

i

πzihi = 0. (42)

Next, differentiation of (42) with respect to hi, s, πzi, πs, and ni one gets

dA

dhi

= −πsS
i
hii

−
∑

j

πziZ
ij
hii

− πzi = 0, (43a)

dA

ds
= πs −

∑

i

πsniS
i
s −

∑

j

∑

i

πzjniZ
ij
s = 0, (43b)

dA

dπzi

= −
∑

i

πsniS
i
πzi

−
∑

j

∑

i

πzjniZ
ij
πzi

− hi −
∑

j

njzji = 0, (43c)

dA

dπs

= s−
∑

i

nisi −
∑

i

πsniS
i
πs

−
∑

j

∑

i

πzjniZ
ij
πs

= 0, (43d)

dA

dni

= −πssi −
∑

j

πsnjS
j
ni
−
∑

j

πzjzij −
∑

j

∑

k

πzknjZ
ik
ni

= 0. (43e)

Finally, combining (34a) and (43a), (34b) and (43b), (34f) and (43c), (34g) and (43d), (34h)

and (43e), results in

phi =
pyg

H i
yig

+ πzi, (44a)

ps = πs, (44b)

hi +
∑

j

njzji = 0, (44c)

s =
∑

i

nisi, (44d)

ψ̇i = (δ − bi)ψi −
pygH

i
ni

H i
yig

− θni + πss+
∑

j

πzjzij. (44e)

�
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Proof of Proposition 2:

Observe that the quasi-concavity of U and the concavity of the functions Bi (all i), F , H i

(all i), Qk (all k), R ensures that the first-order conditions listed in the colum 1 (2) of Table

1 are both necessary and sufficient for the efficient (open acces IEES) allocation. To prove

Proposition 2 check that with the assignment of prices and taxes as listed in Proposition 2

there is an exact correspondence between the second column of Table 1 and the first column

of Table 1. �

Proof of Proposition 3:

If for some predetermined time path of taxes, Θ, a general equilibrium of the IEES with

open access habitat exists, the associated equilibrium allocation entails specific values of

the externality-related variables H and R, say H̄ and R̄. Rather than proving existence

for predetermined Θ we turn the problem on its head by showing that for predetermined

H̄ and R̄ there exists some time path Θ for which a general equilibrium of the IEES

exists (and which then obviously exhibits H = H̄ and R = R̄). To this end we maximize

the consumer’s present value utility subject to the constraints (1)-(14) and subject to the

constraints h̄i (all i) and r̄. The corresponding Lagrangean reads

L̄P = LP +
∑

i

αh̄i(hi − h̄i) + αr̄(r − r̄), (15’)

where LP is given by (15). The first-order conditions are listed in column 1 of Table 1

where lines 2 and 9a have to be replaced by

αvi =
αyg

H i
yg

+ αzi − αh̄i (2’)

and

ρ̇− γ̇ = (ρ− γ) (δ −Rr) − αr − αr̄ −
∑

k

Uqck
Qk

r + αs. (9a’)

The first-order conditions characterize a Pareto efficient allocation constrained by hi = h̄i

and r = r̄. The following lemma can be proven along the same lines as Proposition 1.

Lemma 1.

If the function U is quasi-concave and the functions Bi (all i), F , H i (all i), Qk (all k), R

are concave, a solution (α,β,γ,ρ,Am,Ay) to the Hamiltonian (15’) exists.

Next, setting phi = αvi (all i), pr = αr, pyg = αyg (all g), πzi = αzi > 0 (all i), πs = αs,

θr = πs −
∑

k

pygUqck
Qk

r

Uycg
− αr̄ (any g), θhi = πzi − αh̄i (all i) renders identical the equations
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in lines 1-11 of column 1 (where 2 and 9a are replaced by 2’ and 9a’) of Table 1 and the

equations in lines 1-11 of column 2 of Table 1. The matching of these columns together

with Lemma 1 proves that for predetermined
(
H̄, R̄

)
there is a set of time paths of taxes,

say M
(
H̄, R̄

)
, such that for any Θ ∈ M

(
H̄, R̄

)
there exists a general equilibrium of the

IEES with open access habitat characterized by H = H̄ and R = R̄.

Define Ω := {Θ
∣
∣Θ ∈ M

(
H̄, R̄

)
for all H̄ ≥ 0, R̄ ≥ 0}. We clearly showed that Ω is non-

empty and that associated to every Θ ∈ Ω there is an equilibrium of the IEES. In fact,

there is no equilibrium of the IEES for predetermined Θ, if Θ /∈ Ω. To validate that claim

suppose the contrary, i.e. suppose that there is some Θ̃ /∈ Ω supporting an equilibrium.

The associated equilibrium allocation then entails some specific time path of harvesting and

land conversion, say H̃ and R̃. But we showed above that for
(

H̃, R̃
)

there exists a set of

tax paths, M
(

H̃, R̃
)

6= ∅ which necessarily contains Θ̃ as an element. Hence Θ̃ ∈ Ω. This

contradiction proves that there exists a general equilibrium for the IEES with open access

habitat for predetermined Θ, if and only if Θ ∈ Ω. �

The proof of Propositions 4 and 5, respectively, is analogous to the proof of Propositions 2

and 3, respectively, and is therefore omitted.

Proof of Proposition 6:

Equations (26), (27) and (29) follow from the equations in lines 2 and 9 (column general

equilibrium) of Table 1 taking into account θhi and θr from Proposition 2.

Equation (28) is proven as follows: From line 10 in Table 1:

β∗

i =
1

δ

(
∑

k

p∗ygUqck
Qk

ni

Uycg

+
p∗ygH

i
ni

H i
yig

− π∗

rri −
∑

j

π∗

zjzij

)

.

Making use of the budget constraint defined in (16):

β∗

i =
1

δ

(
∑

k

p∗ygUqck
Qk

ni

Uycg

+
p∗ygH

i
ni

H i
yig

− π∗

rωi −
π∗

zihi

ni

)

.

Invoking (26) we obtain

p∗ygH
i
ni

H i
yig

= (p∗hi − π∗

zi)H
i
ni

=
(p∗hi − π∗

zi)hi

ni

·
niH

i
ni

hi

.

Equations (30) and (31) follow from the first order conditions

ρ̇ = ρδ − ρRr + γRr − αr −
∑

k

αqkQ
k
r ,

γ̇ = γδ − αs
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of (15). Setting ρ̇ = γ̇ = 0 and using the information of Proposition 2 yields the desired

equations. �
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