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1 Introduction

Previous contributions to the economics of solid waste management such as for example

Dinan (1993), Fullerton/Kinnaman (1995), Kohn (1995) and Highfill/McAsey

(1997) ignored the fact that the process of waste disposal, treatment and recycling and

consequently the extent of the accompanying environmental damage is influenced not

only by the quantity of the consumption goods but also by several product characteris-

tics. These characteristics generally are chosen by the producers such as to minimize the

production cost without recognizing external effects at the end of the product-life-cycle.

As a consequence one would expect allocative inefficiency due to the product design of

consumption goods.

This type of environmental distortion has already received much attention in the po-

litical discussion of solid waste management. Nevertheless, the economic literature does

not provide a sound theoretical foundation of that issue of product-life-cycle analysis.

Among the few exceptions are Fullerton/Wu (1998) who consider the package rate

and the recyclability of consumption goods. Assuming that markets fail to be active they

suggest possible tax/subsidy schemes to correct the pertinent distortion. In two recent

papers, Eichner/Pethig (1999a,b) specify the concept of recyclability by explicitly tak-

ing into account the recycling sector as well as the material content of the products which

is measured by the amount of material per unit of output. With respect to this product

characteristic they investigate the ability of markets to provide an efficient resource allo-

cation as well as the possible policy instruments for restoring allocative efficiency in case

the markets fail.

By abstracting from the possibility of recycling, the present paper examines a fur-

ther product characteristic which is important for solid waste management, namely the

durability of consumption goods. At first glance, the relationship between the product

durability and the waste flow of an economy may not be easy to see. In order to clarify

this point, consider the following simple example. Suppose a producer supplies a car with

a lifetime of 10 years or, alternatively, two cars with a lifetime of 5 years each. If the

material needed for a car with a 5-year lifetime is more than half the weight of the car with

a 10-year lifetime, then the amount of solid waste per year is greater in the case of 5-year

cars than in the case of 10-year cars. Since this hypothesis regarding the comparative

weight of 5-year and 10-year cars is plausible, an increasing product durability tends to

reduce the material throughput of the economy and thus the amount of waste per period

as well as the accompanying environmental damage.

To the best of our knowledge, Wagner (1992) is the only author who explicitly mod-

els the waste flow of durable goods. But he doesn’t include environmental externalities

into his model and so obtains the - not very surprising - result that the durability of

consumption goods is Pareto efficient. If there are no markets for product characteristics

and environmental quality, however, producers in a laissez-faire economy generally won’t

internalize the external cost and thus they fail to provide an efficient product design.

Therefore, the present paper reexamines the issue of durability choice under the environ-

mental perspective. A dynamic model of a durable consumption good is developed. The



2 Introduction

built-in product durability is a decision variable of the producers where an increase in the

durability leads to an increase in the production cost. After consumption the used prod-

ucts are scrapped and cause environmental damage through for example waste transport,

incineration or landfilling. It is shown that price-taking producers in a laissez-faire econ-

omy choose an inefficiently low durability and an inefficiently large material throughput

with an accompanying inefficiently large amount of solid waste. Furthermore, it turns

out that, besides more complex tax/subsidy schemes, simply a Pigouvian tax on waste is

sufficient to ensure an efficient resource allocation. In our framework, as will be argued,

the Pigouvian taxation can also be interpreted as an extension of the producer respon-

sibility which means that the producer legally remains the owner of the products and

at the end of the product-life-cycle is forced to pay the disposal costs. The extension of

the producer responsibility has received much attention in the political discussion of solid

waste management because it is expected to provide incentives for an efficient product

design (OECD (1998)). Our analysis will support this view with respect to an efficient

regulation of the product durability.

The choice of product durability is not a new issue in economic theory. By completely

ignoring the environmental perspective, there has been a long debate about the relation-

ship between the market structure and the durability of consumption goods. According

to the so-called Swan’s independence result (Swan (1970), Sieper/Swan (1973)) the

product durability under monopoly equals the one under perfect competition. Despite

the fact that it has been shown to be sensitive to some of Swan’s original assumptions

(for a survey see Schmalensee (1979) as well as the introduction in the more recent

article of Mueller/Peres (1990)), the independence result is expected to hold also in

the case of an oligopoly (Goering (1992)). At first glance, this seems to be a useful

result in view of the present paper because one may concentrate on the environmental

impact of the product durability under one market structure and neglect the other ones.

Of course, this is not true since the material throughput of an economy also is affected

by the quantity of the durable goods. Under imperfect competition this quantity usually

differs from that under perfect competition due to some market power of the producers.

Hence, the amount of solid waste and the accompanying environmental damage depend

on the market structure even when the durability is the same. The present paper addi-

tionally aims to outline the differences in the optimal waste management policies under

alternative market structures. It is shown that under imperfect competition (monopoly

as well as oligopoly) the Pigouvian tax on waste (or the extension of the producer respon-

sibility) indeed provides the right incentive for an efficient product design but generally is

not capable of fully correcting the distortion with respect to the quantity of the consump-

tion goods. Therefore, the amount of solid waste is inefficient even when the durability

is on its socially optimal level. To restore the overall efficiency, a subsidy on the firm’s

stock of the durable good is also required.

The plan of the paper is as follows. In section 2 the model is outlined and the socially

optimal outcome is described. Section 3 contains the market solution where we distinguish

the case of free entry from the case of entry barriers. Under free entry, as will be seen,

the market structure of perfect competition is reached while entry barriers lead to an
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oligopoly. The latter case is too complex to be analysed in the general model. Thus we

restrict ourself to numerical simulations. Section 4 returns to the more general model and

considers a multi-plant monopoly. Section 5 offers a summary and conclusion.

2 Welfare Maximizing Plan

2.1 General Surplus and Cost Functions

The following analysis adopts the framework of Kamien/Schwartz (1974) and Swan

(1977) and extends their approach by explicitly taking into account a flow pollution

caused by the scrapped units of durable goods. The supply side of the economy is rep-

resented by n identical firms where in the present paper two cases are distinguished. In

the first case, the number of firms is treated as an endogenous variable. Hence, in the

problem of welfare maximization n is explicitly chosen by the social planner whereas in

the analysis of markets n characterizes the market structure and is determined by the

number of firms which enter the market, namely those that have nonnegative profits. In

the second case, the number of firms will be taken as given for example due to political or

legal constraints or due to prohibitively large entry cost. In this case the market structure

is fixed. For the moment, however, suppose an endogenous number of firms.

Each firm produces a durable consumption good with the cost function K(y, s, δ). y(t)

is the production rate in period t and s is the plant size. The durable good is modeled as a

perfectly divisible good which ”evaporates” at the built-in decay rate δ, i.e. at every point

in time a fraction δ of the durable’s stock is scrapped. The term 1/δ can be interpreted

as the average built-in durability of the consumption good. Assume that an increase in

the production rate or a decrease in the decay rate (an increase in the durability) leads to

an increase in the production cost at increasing rates, i.e. Ky , Kyy > 0, Kδ < 0, Kδδ > 0.

With respect to plant size the cost function exhibits an U-shape.1 The production rate is

determined for every t while the plant size and the durability are chosen once-and-for-all.

This rather strong assumption can be rationalized by prohibitively large adjustment costs

for variations of s and δ after t = 0.

Every firm rents rather than sells its output. The firm remains the owner of the

produced units, accumulates these units over time and sells the services of the durable

good rather than the good itself. The firm’s accumulated stock c(t) of the durable good

for time t is enlarged by the produced units in t and lowered by the scrapped units in t.

Hence, c(t) satisfies the differential equation2

ċ(t) = y(t)− δc(t) with c(0) = 0. (1)

As Swan (1970), p. 886 argues, the strategies of renting and selling the products are

equivalent when the consumers are rational. Under this assumption the sales price of

1) For a further discussion of these properties see the specification of K on p. 7.
2) The initial stock must be zero because otherwise there would be units of the durable good produced

prior to the decision period with a built-in durability not necessarily equal to the one chosen for t ≥ 0.
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an unit of the durable good equals the present value of its rentals and thus the firm’s

revenue and decisions are the same for the strategy of renting and the strategy of selling

the good. Assuming the renting strategy in the present paper simplifies the formulation

and solution of the model. However, when interpreting our results we will also refer to

the selling strategy in some cases.

The demand side of the model is represented by the demand function P (nc). This

function gives the rental price for an unit of the consumption good (or the price for an

unit of the durable’s service) which depends on the total industry stock nc. An increasing

stock causes a decreasing rental price, i.e. P ′ < 0. The consumer surplus is defined as

S(nc) =
∫ nc

0
P (C)dC with S ′(nc) = P (nc) > 0 and S ′′(nc) = P ′(nc) < 0. Hence, an

increasing stock leads to an increasing surplus at decreasing rates. In addition to this

positive effect, a negative effect on consumers is introduced in form of a flow pollution:

In every period t, the quantity nδc(t) of the industry stock which is scrapped turns into

solid waste and causes an externality through for example waste transport, incineration

or landfilling. The environmental damage is denoted by D(nδc) with D′ > 0 and D′′ > 0,

so an increasing scrapping rate leads to increasing environmental cost at increasing rates.

This treatment of solid waste in a dynamic framework does not seem to be appropriate for

all pollution problems because in some cases it is the stock of the solid waste which causes

environmental damage. However, the dynamic framework is not chosen to focus on the

intertemporal effects of waste accumulation but primarily to model durable consumption

goods. Thus, as an approximation it is suitable to neglect dynamic effects of the waste

stock to keep the model as simple as possible.3

To obtain the socially optimal outcome in the economy just described, consider a social

planner who maximizes the social welfare, i.e. who solves the problem4

max
y(t),s,δ,n

∫ ∞

0

e−ρt
(
S(nc) − nK(y, s, δ)− D(nδc)

)
dt (2)

subject to (1) where ρ > 0 stands for the social discount rate. The social welfare equals

the consumer surplus net of the production cost and the environmental cost. For time

t, the instantaneous welfare is represented by the terms in brackets in (2). To solve the

problem (2) the social planner chooses an entire time path of the production rate as well

as the once-and-for-all values for the plant size, the durability of goods and the number of

firms in order to maximize the discounted social welfare over an infinite planning horizon.

For the time being we do not impose nonnegativity constraints. Rather, conditions under

which the optimal production is positive are provided below.

Imagine the social planner to proceed step by step. She first keeps the plant size,

the durability and the number of firms constant and determines the whole path of the

production rate and the accompanying path of the durable’s stock. By inserting these

3) In the taxonomy of Tietenberg (1988), p. 307 we consider the fund pollutants and ignore the stock
pollutants of the waste flow. However, it is not expected that the main results of our analysis change
if the waste stock is explicitly taken into account.

4) We suppress the time variable t so far as misunderstandings are not possible. Subscripts denote partial
derivatives. The derivative of a function with only one argument is written with a prime.
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welfare-maximizing time paths into the objective functional she obtains a welfare function

which depends on the plant size, on the durability and on the number of firms and

therefore, in the second step, can be used to determine the socially optimal values of

these variables. In the first step, for given s, δ and n, equation (2) becomes a problem of

optimal control with the present-value Hamiltonian

H = e−ρt
(
S(nc) − nK(y, s, δ)− D(nδc)

)
+ µ

(
y − δc

)
where µ is the costate variable. Since S − nK − D is concave in y and c the first-order

conditions

Hy = −ne−ρtKy(y, s, δ) + µ = 0, µ̇ = −Hc = −ne−ρt
(
S ′(nc) − δD′(nδc)

)
+ δµ (3)

are necessary and sufficient to solve the problem. The second equation in (3) is solved

for µ with the help of the transversality condition limt→∞ µ(t) = 0 and the method of

variation of the parameter. The result is

µ(t) = n

∫ ∞

t

e−ρve−δ(v−t)
(
S ′(nc(v))− δD′(nδc(v))

)
dv. (4)

The last two factors of the integrand in this equation stand for the marginal change in

the net consumer welfare (consumer surplus less environmental cost) in period v due to a

marginal change in the firm’s stock of the durable in period t. Discounting this marginal

value to period 0, integrating from t to infinity and summing up over all firms yields the

total social value of an additional unit of the firm’s stock in period t. Thus, µ can be

interpreted as the social shadow price of c.

Combining (4) with the first equation in (3) yields

Ky(y(t), s, δ) +

∫ ∞

t

e−(ρ+δ)(v−t)δD′(nδc(v))dv =

∫ ∞

t

e−(ρ+δ)(v−t)S ′(nc(v))dv.

The LHS equals the marginal social cost (marginal production cost plus marginal environ-

mental cost) and the RHS equals the marginal social benefit (marginal consumer surplus)

of a marginal increase in the output of period t, all in current values. When both sides

are differentiated with respect to time, we obtain the differential equation

ẏ =
(ρ + δ)Ky(y, s, δ)− S ′(nc) + δD′(nδc)

Kyy(y, s, δ)
. (5)

(1) and (5) are a system of differential equations whose solution represents the socially op-

timal production rate yo(t; s, δ, n) and the socially optimal stock co(t; s, δ, n) of the durable.

This solution depends on the plant size, the product durability and on the number of

firms. From (1) and (5) we easily obtain (∂y/∂c)|ċ=0 > 0, ∂ċ/∂c < 0, (∂y/∂c)|ẏ=0 < 0

and ∂ẏ/∂c > 0. Hence, the phase diagram in figure 1 characterizes the qualitative prop-

erties of the socially optimal time path. The steady state (c∗, y∗) is a saddle point. The

arrowed line represents the optimal trajectory. Since the initial stock of the durable good

is assumed to be zero, the initial value of the production rate must be positive. The path
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Figure 1: Socially optimal time path

of the production rate decreases monotonely until it reaches its steady state value. The

socially optimal stock increases monotonely from zero to its long-run level.

After having calculated the efficient production rate, the social planner now turns to

determining the socially optimal values for the plant size, the durability and the number

of firms. For that purpose, she has to calculate the optimal production rate and the

accompanying stock of the durable good from the above differential equations, insert them

into the objective functional and differentiate this with respect to the three variables.

However, in the general case it is not possible to explicitly specify the solution to the

above system of differential equations. But qualitative insights are obtained by using the

dynamic envelope theorem proposed by LaFrance/Barney (1991). By concentrating

only on the socially optimal value of the product durability, we get the necessary condition∫ ∞
0

Hδ|(yo,co)
dt = 0 or∫ ∞

0

e−ρtKδ(y
o, s, δ)dt +

∫ ∞

0

e−ρtcoKy(y
o, s, δ)dt +

∫ ∞

0

e−ρtcoD′(nδco)dt = 0. (6)

A marginal decrease in the product durability has three effects. First, for every time t

it brings about a (direct) marginal decrease in the production cost whose present value

equals the first integral in (6). Second, it also leads to an (indirect) marginal increase in the

production cost, because in order to maintain the stock of the durable good an increasing

production rate is required for every time t. The present value of these additional costs is

captured by the second integral in (6). Third, a decreasing durability causes an increasing

environmental damage because the amount of solid waste for every time t increases. The

present value of this effect equals the third integral in (6). Hence, roughly speaking,

condition (6) says that the product durability is socially optimal if the saved production

costs due to a decrease in durability are just offset by the cost of added production to

maintain the stock of the durable and the additional environmental cost.

2.2 Quadratic Surplus and Cost Functions

To compare the efficient durability with the one arising under different market structures,

a parametric specification of the demand and the cost functions is warranted. Follow-

ing Kamien/Schwartz (1974), p. 294 we choose second-order approximations. More
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specifically, consider the linear demand function P (nc) = α − βnc with α, β > 0 and the

associated quadratic consumer surplus S(nc) = αnc−β(nc)2/2 with S ′(·) = α−βnc and

S ′′(·) = −β. In addition, we specify the environmental damage function as D(nδc) =

γnδc + ε(nδc)2 with ε, γ > 0 which implies that the marginal environmental costs of the

waste flow are positive (D′(·) = γ + 2εnδc) and increasing (D′′(·) = 2ε).

For the production cost we introduce the quadratic function K(y, s, δ) = y2 +(M(δ)−
2s)y+s2 with M(δ)−2s > 0 and therefore Ky(·) = 2y+M(δ)−2s > 0 and Kyy(·) = 2 > 0.

At first glance, this construction of the production cost seems somewhat artificial, but

as Kamien/Schwartz (1974), p. 294 pointed out the cost function exhibits constant

returns to scale in the long-run (defined as the situation in which the plant size minimizes

the cost function, i.e. s = y) where the long-run unit costs are M(δ). In the short-run the

unit cost function is U-shaped and tangent to the long-run unit cost function at y = s.

Moreover, as will be seen in section 3, the inclusion of the plant-size s ensures that at the

margin (when the number of firms becomes infinite) the model is consistent with previous

models on product durability but, at the same time, is more general than these models

because it allows the investigation of the case in which the number of firms is finite.

The properties of the function M play a key role in the subsequent analysis. We

assume

M ′(δ) < 0, 2M ′(δ) + (ρ + δ)M ′′(δ) > 0. (7)

The first condition postulates a positive correlation between the durability and the pro-

duction cost. The second condition can be rearranged to −δM ′′/M ′ > 2δ/(ρ + δ) which

means that the function M is sufficiently convex, or more economically speaking, that a

decrease in the durability leads to a relatively great decrease in the long-run unit cost. This

condition turns out to be sufficient for the second-order condition of welfare-maximization

and necessary for the second-order condition of profit-maximization (see lemma 1, 2 and

3). Therefore, it can’t easily be discarded.

With the specification of the demand and the cost functions, the welfare-maximizing

production rate and stock of the durable good are the solution to an inhomogeneous

system of linear differential equations. The system consists of (1) and

ẏ = (ρ + δ)y + [βn + 2εδ2n]c/2 − [α − (ρ + δ)(M(δ)− 2s) − γδ]/2. (8)

Equation (8) is obtained by inserting the parametric functions specified above into (5).

The solution to this system of differential equations is (see appendix A1)

yo(t; s, δ, n) = c∗
[
δ + (λ − δ)e−λt

]
, co(t; s, δ, n) = c∗

[
1 − e−λt

]
(9)

with

c∗ :=
α − (ρ + δ)(M(δ)− 2s) − γδ

2λ(ρ + λ)
, λ :=

√
(ρ + 2δ)2 + 2βn + 4εδ2n − ρ

2
. (10)

c∗ is the steady state value of the firm’s stock of the durable good and −λ is the (relevant)

root of the characteristic equation. Note, that λ > δ. To compute the efficient values of
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the plant size, the product durability and the number of firms, insert the solution (9) for

the production rate and the stock of the durable into the objective functional in (2). This

yields the maximum welfare5

Ṽ (s, δ, n) =
n

ρ

(
c∗2λ2 − s2

)
.

First, we calculate the optimal value of the plant size taking as given δ and n. From (10)

we obtain ∂c∗/∂s = (ρ + δ)/λ(ρ + λ). Thus, the necessary condition Ṽs = 2n[c∗λ(ρ +

δ)/(ρ + λ) − s]/ρ = 0 yields the socially optimal plant size

so =
[α − (ρ + δ)M(δ)− γδ](ρ + δ)

2 [(ρ + λ)2 − (ρ + δ)2]
(11)

where we have used the definition of c∗ from (10). The sufficient condition Ṽss = 2n[(ρ +

δ)2/(ρ + λ)2 − 1]/ρ < 0 is satisfied due to λ > δ. The steady state value of the stock of

the durable good can now be recalculated from (10) and (11) as

c∗ =
[α − (ρ + δ)M(δ) − γδ] (ρ + λ)

2λ [(ρ + λ)2 − (ρ + δ)2]
(12)

to obtain the maximum welfare as a function of the durability and the number of firms

V (δ, n) := Ṽ (so, δ, n) =
n

4ρ

[α − (ρ + δ)M(δ)− γδ]2

(ρ + λ)2 − (ρ + δ)2
. (13)

To focus on an economically meaningful solution, we assume

1 < (α − γδ)/(ρ + δ)M(δ) < (ρ + λ)2/(ρ + δ)2. (14)

The first inequality renders the steady state stock c∗ and the plant size so positive. The

second inequality ensures M(δ)− 2so to be positive as assumed in the specification of the

model. Some remarks on the assumption (14) are in order. First, it is not redundant,

since λ > δ implies the last term of the inequalities to be greater than one. Second, it

appears to be more restrictive than it really is: Except for the numerical computations (in

which the nonnegativity constraints are explicitly checked), below only the case in which

the number of firms grows without bounds will be considered. But the last term in (14)

tends to infinity as n → ∞ and the second inequality is satisfied so long as α is finite.

Thus, roughly speaking, the above assumption means that the prohibitive price α for the

services of durables is finite but large enough for the optimal production to be positive.

Finally, the maximum welfare (13) is nonnegative independent of (14).

The socially optimal values of the durability and the number of firms can now be

specified with the help of the maximum welfare (13). To avoid notational cluttering,

define A(δ) := α − (ρ + δ)M(δ)− γδ with A′(δ) = −[(ρ + δ)M ′(δ) + M(δ) + γ], A′′(δ) =

5) We could avoid this calculation by using the envelope theorem as in the general case. But, as will be
seen in the next section, this theorem can’t be used to get the solution for a competitive market. To
keep the results comparable, proceed as above at the cost of a little more calculation expense.
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−[2M ′(δ)+ (ρ + δ)M ′′(δ)] and B(δ, n) := (ρ+ λ)2 − (ρ+ δ)2. The maximum welfare then

becomes V (δ, n) = nA2(δ)/4ρB(δ, n). In order to specify the social optimum we need the

first and second-order condition for durability,

Vδ(δ, n) = 0 ⇔ −A′(δ) +
A(δ)Bδ(δ, n)

2B(δ, n)
= 0 (15)

Vδδ(δ, n) < 0 ⇔ A′′(δ) <
A(δ)Bδδ(δ, n)

2B(δ, n)
− A′2(δ)

A(δ)
(16)

as well as the first derivative of the maximum welfare with respect to n

Vn(δ, n) =
A2(δ)

2(ρ + 2λ)[4δ2 + n(β + 2εδ2) + 10ρδ + 11ρ2 + 4δλ + 6ρλ]
. (17)

Note, that in order to derive (16) we have used (15) and A > 0 due to assumption (14)

as well as B > 0 due to λ > δ. The following lemma is established with the help of (15)

to (17).

Lemma 1 (Social Optimum) If the number of firms is endogenous, then the social

optimum has the following properties:

(i) The number of firms tends to infinity and the steady state is reached immediately.

(ii) The firm’s plant size so, production rate yo(t) and stock of the durable good co(t)

converge to zero for all t.

(iii) The industry stock of the durable good becomes

Co := lim
n→∞

nco(t) =
α − (ρ + δo)M(δo) − γδo

β + 2ε(δo)2
for all t. (18)

(iv) The optimal product durability 1/δo is implicitly defined by

(ρ + δo)M ′(δo) + M(δo) + γ + 2εδoCo = 0. (19)

This condition is necessary and sufficient for the socially optimal durability.

Proof: Note first, that for given durability equation (17) implies Vn > 0 for all finite n.

Hence, the socially optimal number of firms is infinite. Since this implies λ → ∞ owing

to (10) and yo(t) → y∗ = δc∗ and co(t) → c∗ for all t owing to (9) we have proved (i). The

firm’s plant size so and the steady state stock c∗ of the durable converge to zero owing to

(11) and (12).6 This implies yo(t), co(t) → 0 for all t and (ii) of lemma 1 is proved. (iii)

is directly shown by computing the limit value for nco(t) = nc∗ as n → ∞. To show that

(iv) is true, let n → ∞ in (15). A and its derivatives are independent of n and therefore

remain unchanged. However, Bδ/2B → 2εδ/(β + 2εδ2) and Bδδ/2B → 2ε/(β + 2εδ2) as

6) This and the subsequent limit values have been calculated by the author with the help of the Math-

ematica package. The author hopes that the reader shares the trust in the computational capacity
of this package. Details on the calculation can be obtained upon request.
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n → ∞. Inserting the first of these limits into the first-order condition (15) and using

Co from (18) proves (19) as a necessary condition for the socially optimal durability. By

using the second of these limits in (16) the second-order condition Vδδ < 0 becomes

−[2M ′(δo) + (ρ + δo)M ′′(δo)] < 2εCo − [(ρ + δo)M ′(δo) + M(δo) + γ]
2

α − (ρ + δo)M(δo) − γδo

(18),(19)
=

2εβCo

β + 2ε(δo)2

This inequality is satisfied because (7) renders the LHS negative whereas the RHS is

positive due to (14). Hence, the second-order condition is satisfied and (19) is necessary

and sufficient for determining the welfare maximizing product durability. �

There are three remarks on lemma 1. First, although the socially optimal value of the

firm’s stock of the durable good converges to zero as the number of firms grows without

bounds, assumption (14) ensures the socially optimal industry stock of the durable good

in (18) to be positive. Second, the optimal time path in the phase diagram of figure

1 becomes vertical since the steady state is reached immediately. In other words, the

steady state industry stock of the durable is already produced at the first point in time

and prevails thereafter. Correspondingly, the durable production is such that the quantity

of scrapped durables is exactly replaced at each point in time. Third, equation (19) has

the same marginal cost/marginal benefit interpretation for the durability as the general

condition (6): The first term in (19) can be interpreted as the marginal cost saving due to a

decreasing durability. M stands for the cost of added production to keep the stock of the

durable good constant. The last two terms exactly match the marginal environmental

cost in the social optimum. To see this, note that with the help of (18) the marginal

environmental damage in the social optimum becomes MD := limn→∞ D′(nδoco(t)) =

γ + 2εδoCo which equals the last two terms on the LHS of (19). Hence, according to this

equation the product durability is socially optimal if the positive effect of a decrease in

the durability, namely the saved direct production cost, is offset by the negative effects

consisting of the additional production cost to maintain the stock of the durable at its

efficient level and the additional environmental cost.

By totally differentiating (18) and (19) the following comparative dynamic results for

the product durability, the industry stock of the durable good and the amount of solid

waste in the social optimum are obtained (see appendix A2).

∂α ∂β ∂ρ ∂γ ∂ε

∂δo < 0 > 0 > 0 < 0 < 0

∂Co > 0 < 0 < 0 < 0 < 0

∂(δoCo) > 0 < 0 ? 0 < 0 < 0

Table 1: Comparative dynamic results of the social optimum

The partial derivatives are all intuitively plausible: An expanding market for the durable

good, caused either by an increase in the maximum demand price α or by an increase

in the slope −β of the demand function, leads to an increase in the efficient durability

of consumption goods. To understand this, note that the expanding market leads to

an increasing industry stock of durables and therefore c.p. to an increasing amount of
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solid waste. To partially compensate for this increase in the amount of waste and the

accompanying increase in the environmental cost, the social planner has to reduce the

decay rate or, equivalently, raise the product durability. An increase in the social discount

rate reduces both the socially optimal durability and the socially optimal stock of the

durable because the welfare of future generations receives a lower weight in the welfare

function. However, the change in the waste flow is ambigous in sign. The most important

result of the comparative analysis is captured in the last two column of table 1.

Proposition 1 An increase in the marginal environmental damage, reflected by an in-

crease in either γ or ε, brings about an increase in the socially optimal durability, a

decrease in the socially optimal industry stock of the durable good and a decrease in the

socially optimal amount of solid waste.

Since for a greater γ or a greater ε every scrapped unit causes greater environmental

damage, the socially optimal amount of waste must be reduced by lowering the industry

stock and by increasing the durability of the consumption goods. This result provides

the new insight that the product durability is affected by the extent of the environmental

damage caused by the solid waste of durable consumption goods. The existing literature

on the product durability (see the articles already referred to in the introduction) implic-

itly assumes γ = ε = 0. But proposition 1 shows that the socially optimal durability

increases when γ or ε are increased to a number greater than zero.

Until now we have investigated the case in which the number of firms is endogenously

determined by the social planner. As mentioned at the beginning of this section, the case

of a fixed number of firms is also of interest in the present paper. When n is fixed and finite,

then equation (17) becomes superfluous and the steady state is not reached immediately.

The socially optimal values of the production rate, the stock of the durable, the plant

size and the durability are determined by (9) to (12), (15) and (16). However, because

these equations are far too complex to be solved parametrically, it is quite difficult (if not

impossible) to provide useful interpretations and to ascertain the influence the parameters

exert on the optimal values. Hence, for the moment we will refrain from this sophistical

work. Nevertheless, in section 3.3 some numerical results are provided.

3 Market Solution

3.1 Open-Loop Nash Equilibrium

Now consider the case in which the durable is supplied by n identical profit-maximizing

firms. The single firm has to choose the time path of the production rate and the stock

of the durable good on the one hand and the plant size and the product durability on

the other hand. For constant plant size and durability, the first decision is modeled as a

non-cooperative differential game with an open-loop Nash equilibrium:7 The firm chooses

7) For an introduction to equilibrium concepts in differential games see for example Petit (1990), pp.
207. A recent application of the open-loop Nash equilibrium in a model similar to the present one but
with a stock pollution and a nondurable good is given by Benchekroun/van Long (1998).



12 Market Solution

a time path for its production rate according to what is the best response to the time

paths chosen by its competitors. A Nash equilibrium is reached if, for given actions of the

other firms, no firm has an incentive to change its own plan. The information structure of

the firm’s decision is open-loop which means that the firm at time t only recalls the initial

state, i.e. the initial value of the durable’s stock. Owing to this information structure we

can also say that the firm determines the entire time path of the production rate right at

the beginning of the planning period. Of course, a firm may consider to deviate from its

initial plan as time goes by, but it will not do so because it is known from literature that

the open-loop Nash equilibrium is time consistent, i.e. along the equilibrium path no firm

is able to make itself better off by changing its original plan (Karp/Newbery (1993), pp.

889). Due to the assumption of perfect foresight the individual firm anticipates the open-

loop Nash equilibrium and inserts the equilibrium solution into the objective functional.

This yields a profit function which depends on the plant size as well as on the durability

and which can be used in the second stage of planning (also right at the beginning of the

planning period) to determine the profit-maximizing values of these variables.

To be more specific, consider a single firm with the revenue R(c) = cP (c + C̃) where

C̃ is the durable’s stock of all other firms. The firm believes C̃ to be independent of its

own actions. For the marginal revenue suppose R′(c) = P (c + C̃) + cP ′(c + C̃) > 0 and

R′′(c) = 2P ′(c + C̃) + cP ′′(c + C̃) < 0. The firm solves the problem

max
y(t),s,δ

∫ ∞

0

e−ρt
(
cP (c + C̃) −K(y, s, δ)− τyy − (τwδ + τc) c

)
dt (20)

subject to (1) where it is assumed that the firm’s discount rate coincides with the social

one. The instantaneous profit equals revenue net of production cost and tax payments.

Since in the presence of external cost markets are expected to fail in a laissez-faire economy,

the policy maker has introduced a tax τy on the firm’s output, a tax τc on the firm’s stock

of the durable good and a tax τw on the amount of solid waste δc. For the moment, τw

is simply interpreted as a tax rate. As will be seen in the interpretation of proposition 3,

however, this tax captures a wider class of policy instruments. All tax rates are announced

by the policy maker right at the beginning of the planning period and are taken as given by

the firms. Moreover, the tax rates are assumed to be constant over time. This assumption

can be justified by political or legal constraints. It excludes dynamically inconsistent

behaviour of the policy maker.

For given plant size and durability, the open-loop Nash equilibrium can be derived by

an optimal control approach similar to that already used in section 2: After identifying

the firm’s shadow price of the durable’s stock and the marginal cost/marginal revenue

condition for the firm’s output we obtain the differential equation8

ẏ =
(ρ + δ)Ky(y, s, δ) + (ρ + δ)τy − P (c + C̃) − cP ′(c + C̃) + τwδ + τc

Kyy(y, s, δ)
. (21)

(1) and (21) determine a time path of the production rate and of the stock of the durable

good which is the firm’s best response to C̃ , i.e. to the stock of the durable good chosen

8) For notational convenience, the same symbols are used here as in the welfare maximization problem,
even though their meaning is not the same in general.
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by the firm’s competitors. If, for given actions of the other firms, no firm has an incentive

to deviate from its time path, then an open-loop Nash equilibrium is reached. To keep

the analysis tractable we restrict our attention to the symmetric equilibrium. Hence, the

equilibrium time path is obtained by inserting the condition C̃ = (n − 1)c or c + C̃ = nc

in (1) and (21) and solving this system of differential equations for the production rate

and the stock of the durable. The accompanying phase diagram is analogous to that in

figure 1: The production rate decreases until it reaches its steady-state value while the

stock of the durable increases from zero up to its long run level.

Now turn to the choice of the plant size and the product durability. Due to the

assumption of perfect foresight the individual firm anticipates the symmetric equilibrium

and inserts the equilibrium solution right at the beginning of the planning period into the

objective functional (20). Since the equilibrium solution depends on the plant size and

on the durability, the firm obtains the maximum profit as a function of these variables.

To determine the profit-maximizing values of the plant size and the durability, the partial

derivatives of the profit function are set equal to zero. It is important to note that even

in the general case it is not feasible to use the dynamic envelope theorem as in the welfare

maximization because this theorem doesn’t apply to differential games. Therefore, we

proceed immediately with parameterizing the model. With the same specification of

the consumer demand and the production cost as in section 2, the firm’s revenue reads

R(c) = αc−βc(c+C̃) with R′(c) = α−2βc−βC̃ and R′′(c) = −2β. Next we insert the first

derivative of the revenue function together with the equilibrium condition C̃ = (n − 1)c

and the derivatives of the production cost function into (21) to get an inhomogeneous

system of linear differential equations which consists of (1) and

ẏ = (ρ + δ)y + β(n + 1)c/2 − [α − (ρ + δ)(M(δ)− 2s + τy) − τwδ − τc]/2. (22)

The solution to this system, yc(t; s, δ) and cc(t, s, δ), depends on the plant size as well as

on the product durability and represents the equilibrium time path of a single firm. It has

exactly the same form as the socially optimal solution in (9) where, however, the steady

state c∗ of the durable good and the root λ of the characteristic equation from (10) are

replaced by

c∗ :=
α − (ρ + δ)(M(δ) − 2s + τy) − τwδ − τc

2λ(ρ + λ)
, λ :=

√
(ρ + 2δ)2 + 2β(n + 1) − ρ

2
. (23)

(23) is easily verified by applying the same procedure as in the case of welfare maximization

(see appendix A1) to (1) and (22). The definition of λ again implies λ > δ. Inserting

the profit-maximizing production rate and the stock of the durable into the objective

functional in (20) yields the maximum profit as a function of plant size and durability

Π̃c(s, δ) =
1

ρ

(
c∗2λ2z − s2

)
with z := 1 − β(n − 1)

(ρ + λ)(ρ + 2λ)
ε ]0, 1[.

z is less than one since n > 1 and greater than zero since (ρ + λ)(ρ + 2λ) = ρ(ρ + λ) +

2δ(ρ + δ) + β(n + 1) > β(n− 1) owing to the definition of λ. From Π̃c
s = 0 we obtain

sc =
[α − (ρ + δ)(M(δ) + τy) − τwδ − τc] (ρ + δ)z

2 [(ρ + λ)2 − (ρ + δ)2z]
(24)
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as the profit-maximizing plant size. The second-order condition Π̃c
ss < 0 is satisfied since

λ > δ and zε]0, 1[. Using (24) we recalculate the steady-state value c∗ from (23) as

c∗ =
[α − (ρ + δ)(M(δ) + τy) − τwδ − τc] (ρ + λ)

2λ [(ρ + λ)2 − (ρ + δ)2z]
(25)

which allows us to express the maximum profit as a function of durability alone

Πc(δ) := Π̃c(sc, δ) =
1

4ρ

[α − (ρ + δ)(M(δ) + τy) − τwδ − τc]
2z

(ρ + λ)2 − (ρ + δ)2z
. (26)

In all cases investigated below, the various variables will be nonnegative due to assumption

(14). The profit-maximizing durability is obtained by differentiating the maximum profit

(26). For notational convenience, define A(δ) := α − (ρ + δ)(M(δ) + τy) − τwδ − τc with

A′(δ) = −[(ρ+ δ)M ′(δ)+M(δ)+ τy + τw], A′′(δ) = −[2M ′(δ)+(ρ+ δ)M ′′(δ)] and B(δ) :=

(ρ+λ)2/z− (ρ+ δ)2. The maximum profit (26) is then written as Πc(δ) = A2(δ)/4ρB(δ).

The first and second-order conditions for a maximum of the function Πc are Πc ′ = 0 and

Πc ′′ < 0 or

−A′(δ) +
A(δ)B ′(δ)

2B(δ)
= 0 and A′′(δ) <

A(δ)B ′′(δ)
2B(δ)

− A′ 2(δ)
A(δ)

, (27)

respectively. Thus, for the symmetric open-loop Nash equilibrium, equation (27) de-

termines the profit-maximizing durability which depends on all model parameters and

especially on the number of firms n. Again, for a fixed number of firms these conditions

can only be investigated by numerical simulations. Before doing this, however, we will

consider the case of an endogenous number of firms.

3.2 Free Entry - The Case of Perfect Competition

Saying that the number of firms is endogenous means that there is free entry to the market

of the durable good. Under free entry, the market is entered by new firms so long as their

expected profits are positive. Only when the expected profit becomes zero, no additional

firm decides to produce the durable good. The following lemma describes the open-loop

Nash equilibrium for this scenario.

Lemma 2 (Free entry) The market equilibrium under free entry has the following prop-

erties:

(i) The number of firms tends to infinity and the steady state is reached immediately. The

maximum profit becomes zero for every firm.

(ii) The firm’s plant size sc, production rate yc(t) and stock cc(t) of the durable good con-

verge to zero for all t.

(iii) The industry stock of the durable good becomes

Cc := lim
n→∞

ncc(t) =
α − (ρ + δc)(M(δc) + τy) − τwδc − τc

β
for all t. (28)
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(iv) The product durability 1/δc satisfies the condition

(ρ + δc)M ′(δc) + M(δc) + τw + τy = 0. (29)

Proof: For any given and finite n, the maximum profit (26) is positive since B is positive

due to λ > δ and zε]0, 1[. For n → ∞ the maximum profit becomes zero because B → ∞.

Thus, the number of firms under free entry tends to infinity. n → ∞ implies λ → ∞ owing

to (23) and therefore yc(t) → y∗ = δc∗ and cc(t) → c∗ owing to (9) in combination with

(23). Hence, the steady state is reached immediately and (i) is completely proved. (ii)

and (iii) are easily proved by computing the limit values of (24), (25) and nc∗ for n → ∞.

To show (iv) let n → ∞ in (27). A and its derivatives don’t depend on n and therefore

remain unchanged. However, B ′/2B → 0 and B ′′/2B → 0 as n → ∞. Hence, the first-

order condition reduces to −A′ = 0 or, equivalently, to (29). The second-order condition

in (27) simplifies to A′′ < −A′2/A the RHS of which is negative. Thus, as suggested in

section 2, the second condition in (7) is necessary for the second-order condition to be

satisfied. �

The market share of every single firm in the free entry equilibrium tends to zero because

the number of firms grows without bounds due to (i) of lemma 2. Regarding the demand

function this means that the influence which the individual firm exerts on the market price

disappears and every firm becomes a price-taker. Thus, perfect competition is reached.

This interpretation of the free entry equilibrium is supported by two further results of

lemma 2: First, the profit for every single firm becomes zero owing to (i). Second, from

(iii) and the linear demand function one obtains M(δc) + τy = (P − τwδc − τc)/(ρ + δc).

Hence, as expected for the market structure of perfect competition, the long-run unit cost

(production cost plus tax payment) equals the capitalized net rental price (rental price

less tax payments) of a unit of the output.9

We can now compare the equilibrium under perfect competition from lemma 2 with

the social optimum from lemma 1. The firm’s plant size, output rate and stock of the

durable good under perfect competition converge towards their socially optimal values

independent of the tax rates due to lemma 1 (ii) and lemma 2 (ii). However, the evaluation

of the product durability, the industry stock of the durable good and the amount of solid

waste depends on the tax rates. Let us first consider the laissez-faire economy.

Proposition 2 Suppose that all tax rates are zero. It then follows that the product dura-

bility under perfect competition is inefficiently low whereas the industry stock of the durable

good and the amount of solid waste under perfect competition are inefficiently large.

Proof: Define F (δ) := (ρ + δ)M ′(δ) + M(δ). Then the socially optimal durability is

determined by F (δo) = −MD < 0 owing to (19) and the profit-maximizing durability is

9)
Swan (1970), p. 890 uses the same condition with zero tax rates as an assumption to derive the profit-
maximizing durability under perfect competition in a laissez-faire economy. Regarding the relationship
between the number of firms and the market structure of perfect competition our model is in line with
the article of Ruffin (1971) who establishes the same result for a static model of a nondurable good
and the article of Dockner (1988) who establishes the same result for a dynamic model in which the
price rather than the quantity of the good is captured by a differential equation.
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determined by F (δc) = 0 owing to (29) and τy = τw = τc = 0. Since F increases with

an increasing δ due to (7) it follows δc > δo or, equivalently, 1/δc < 1/δo. Hence, the

product durability under perfect competition is inefficiently low. To prove the inefficiency

of the industry stock, note that for zero tax rates, equation (28) becomes Cc = (α− (ρ +

δc)M(δc))/β. Compared with Co from (18) we see that the denominator of Cc is lower

than the denominator of Co since 2ε(δo)2 > 0 and that the numerator of Cc is greater

than the numerator of Co since γδo > 0 and T (δc) < T (δo) with T (δ) := (ρ + δ)M(δ).

To see the last statement, note that T ′(δ) = F (δ). Since F is an increasing function in δ

due to (7) and since F (δc) = 0 > −MD = F (δo) this implies T (δc) < T (δo) as suggested.

In short we obtain Cc > Co. Finally, the solid waste flow δcCc under perfect competition

is inefficiently large because both the decay rate and the industry stock are inefficiently

large. �

It is often argued that the product durability is socially optimal independent of the

market structure since due to Swan’s independence result it always equals the durability

under perfect competition and this durability is efficient according to the first welfare

theorem (Goering (1992), p. 58, Tirole (1994), p. 102). However, proposition 2 shows

that such an interpretation is only permitted when the external environmental costs due to

the solid waste of durable goods are completely ignored. Since in our model a decreasing

durability leads to both a decrease in the production cost and a rise in the environmental

cost, producers choose the durability so as to minimize their internal cost, thus ignoring

the external damage of their production to the effect that the durability of their products

is inefficiently low. Formally, this statement is captured by (29). For zero tax rates, the

durability is profit-maximizing if the saved direct production costs (ρ + δc)M ′(δc) of an

decreasing durability are just offset by the additional production costs M(δc) required to

maintain the stock constant. In contrast to the social optimum, this condition ignores

the external environmental damage, providing the producers the incentive to shorten the

product durability. Moreover, the results of proposition 2 go beyond inefficient durability:

The industry stock of the durable good and thus the solid waste flow under perfect

competition are inefficiently large. Of course, this is an obvious result because the solid

waste causes the environmental damage. However, the new insight of proposition 2 is

that the inefficiently large quantity of waste is not only caused by an inefficiently large

quantity of the consumption good but also by an inefficient product design, namely by

an inefficiently low durability.

We turn to the case in which the policy maker uses taxes to influence the firm’s

behaviour in an effort to correct the environmental distortion.

Proposition 3 The market equilibrium under perfect competition is socially optimal if

and only if τw + τy = MD and τc = ρ(τw −MD).

The necessity of the proposed tax system is easily proved by setting δc = δo in (28) and

(29) and solving this for the tax rates with the help of (18) and (19). The sufficiency is

shown by inserting the tax system into (18) and (19) and comparing this with (28) and

(29). Proposition 3 states that the policy maker can achieve the social optimum simply

by Pigouvian taxation, i.e. by setting the tax rate on solid waste equal to the marginal
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environmental damage and all other tax rates equal to zero. Separate instruments to

correct the inefficient durability and the inefficient industry stock of the durable good are

not required because both inefficiencies lead to an inefficiently large amount of solid waste

and therefore can be corrected simultaneously by one instrument. In our framework the

Pigouvian taxation is not restricted to a measure of taxation but it additionally captures

two further policy instruments recently discussed in the solid waste management. First,

the Pigouvian taxation can be interpreted as ”eco-leasing” which means that the producers

are required to rent their products and to pay the disposal costs after consumption (Soete

(1997)). In our model, producers are assumed to rent their output while τw may be

interpreted as the costs which the producers pay directly for the disposal of a scrapped

unit of the durable good rather than as a tax which they pay to the government. Second,

the Pigouvian tax can be interpreted as a take-back requirement according to which the

producers are indeed allowed to sell their output but are legally forced to remain the

owner of the products, to take back the used units after consumption and to pay the

disposal costs for the scrapped units (Holm-Müller (1997), chapter 5). The present

model allows this interpretation, if we agree with Swan’s argumentation that renting the

product is equivalent to selling the product (see p. 3). Of course, eco-leasing and take-back

requirement are almost the same because both assign the property rights of the product

over the entire product-life-cycle to the producers. Hence, eco-leasing and take-back

requirement are special cases of what is called ”extension of the producer responsibility”

(OECD (1998)). In this sense, proposition 3 provides a contribution to the analysis of

liability rules in environmental policy (for a brief survey see Xepapadeas (1997) pp.

69): The extended producer responsibility corrects the inefficiency in the product design

as well as the inefficiency in the industry stock of the durable good and thus is able to

internalize the external environmental costs of the solid waste flow.

In addition to the use of a single tax, proposition 3 suggests convex combinations

of several tax rates capable of restoring the efficiency of the competitive solution. For

example, if the policy maker is not allowed to tax the solid waste (due to political or

legal constraints) then she can still achieve the social optimum by imposing a tax on the

firm’s output (τy = MD) and a subsidy on the firm’s stock of the durable (τc = −ρMD).

The subsidy is needed because each unit of the good produced is taxed by a rate equal

to the marginal environmental damage of the waste although not every unit of the good

immediately turns into waste. A similar result holds, when the policy maker is restricted

to waste taxation below the marginal environmental damage (0 < τw < MD). Then she

resolves efficiency as follows: The output must be taxed with the missing environmental

damage (τy = MD − τw > 0) and a part of this additional tax must be reimbursed by

subsidizing the firm’s stock of the durable (τc = ρ(τw−MD) < 0). Again, this result has an

interesting implication for the extension of the producer responsibility. If the extension is

such that producers are responsible for only a part of the disposal process, then efficiency

can only achieved by introducing further instruments. In Germany, for example, it is

discussed whether the producer in the information technology industry should take back

only a fixed percentage of their products and whether the costs of collecting the goods

should be paid by the producers or by the local authorities (Holm/Müller (1997), p.
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160f.). Our theoretical analysis shows that such regulations are only efficient if they are

accompanied by further policy instruments.

3.3 Barriers To Entry - Numerical Results for Oligopoly

Now we turn to the case in which political constraints or prohibitively large entry costs

restrict the emergence of new firms and thus the number of producers is fixed to a fi-

nite number n. The open-loop Nash equilibrium then describes an equilibrium for an

oligopolistic industry in which the production rate, the firm’s stock of the durable good,

the plant size and the product durability are determined by the equations (9), (23) to

(25) and (27). Since n is finite the steady state won’t be reached immediately.

To find out whether this oligopoly is socially optimal, we have to compare the afore-

mentioned conditions with the pertinent conditions from section 2. In general, this will

be a sophistical work because the equations are much too complex. Thus, we restrict

ourselves to some numerical simulations of the steady state. On the demand side assume

α = 7500 and β = 150 which implies a maximum demand of α/β = 50. This may be

interpreted as a prohibitive anual rental price of 7500 $ per unit and a maximum demand

of 50 mio. units. On the supply side, the long-run unit costs are specified by the function

M(δ) = κδθ, where θ > 0 denotes the elasticity of the long-run unit cost with respect

to the product durability and κ > 0 denotes a scaling factor. Set θ = 0.9 and κ = 2500

which implies that the long-run unit costs lie between 0 and 2500 $ and increase less

than proportionally with respect to the durability. Since we are not interested in convex

combinations of the tax rates, we set all tax rates equal to zero except for the waste tax.

Furthermore, let ε = 0. This is not a tight assumption because ε almost has the same

effects as γ. Moreover, assume a discount rate of six percent per year, i.e. ρ = 0.06. The

values for n, γ and τw are set alternatively according to the columns 1 to 3 of table 2. This

table captures the numerical results for the product durability, the steady state industry

stock of the durable and the steady state amount of waste in both the social optimum

(columns 4 to 6) and the market equilibrium under oligopoly (columns 7 to 9).10

As a reference point, the rows 1 to 4 capture the case without environmental damage

and without taxation. The product durability under oligopoly is then almost socially

optimal (columns 4 and 7). This result is in line with Goering (1992) who uses a

two period model to show that the durability chosen by a renting oligopolist equals the

durability under perfect competition which in the absence of externalities equals the

socially optimal durability. The total industry stock of the durable under oligopoly turns

out to be inefficiently small for finite n (columns 5 and 8). It becomes socially optimal

when the number of firms becomes very large because then every firm becomes a price-

taker (row 4, columns 5 and 8).

In the rows 5 to 8 a relatively large environmental damage of 1000 $ per scrapped unit

of the durable good is introduced. Compared with rows 1 to 4 we see that this leads to

only a small decrease in the efficient industry stock of the durable (column 5) whereas the

10) The results are obtained by solving (15) and (27) for the product durability. This was achieved with
the help of a regular falsi algorithm. The program code can be obtained from the author upon request.
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Parameters Social Optimum Oligopoly

column 1 2 3 4 5 6 7 8 9

row n γ τw δo Co δoCo δc Cc δcCc

1 2 0 0 0.5412 32.5956 17.6393 0.5431 21.7171 11.7947

2 10 0 0 0.5402 32.5897 17.6061 0.5567 29.6151 16.4865

3 1000 0 0 0.5400 32.5881 17.5977 0.5646 32.5539 18.3815

4 109 0 0 0.5400 32.5881 17.5976 0.5404 32.5881 17.6111

5 2 1000 0 0.2510 30.3457 7.6158 0.5431 21.7171 11.7947

6 10 1000 0 0.2509 30.3427 7.6131 0.5567 29.6151 16.4865

7 1000 1000 0 0.2509 30.3420 7.6124 0.5646 32.5539 18.3815

8 109 1000 0 0.2509 30.3420 7.6124 0.5404 32.5881 17.6111

9 2 100 0 0.4523 32.2671 14.5928 0.5431 21.7171 11.7947

10 10 100 0 0.4518 32.2621 14.5752 0.5567 29.6151 16.4865

11 1000 100 0 0.4517 32.2608 14.5707 0.5646 32.5539 18.3815

12 109 100 0 0.4517 32.2608 14.5707 0.5404 32.5881 17.6111

13 2 1000 1000 0.2510 30.3457 7.6158 0.2510 20.2268 5.0771

14 10 1000 1000 0.2509 30.3427 7.6131 0.2514 27.5816 6.9342

15 1000 1000 1000 0.2509 30.3420 7.6124 0.2516 30.3116 7.6270

16 109 1000 1000 0.2509 30.3420 7.6124 0.2509 30.3420 7.6128

17 2 100 100 0.4523 32.2671 14.5928 0.4530 21.5017 9.7410

18 48 100 100 0.4517 32.2610 14.5716 0.4613 31.6000 14.5759

19 1000 100 100 0.4517 32.2608 14.5707 0.4617 32.2279 14.8786

20 109 100 100 0.4517 32.2608 14.5707 0.4518 32.2608 14.5765

Table 2: Numerical results for the steady state of the oligopoly

efficient durability increases dramatically (column 4). The efficient amount of solid waste

decreases (column 6) due to both the decrease in the industry stock and the increase in

the product durability. Of course, the introduction of the environmental damage doesn’t

have an effect on the oligopoly solution at all (columns 7 to 9). This implies that the

product durability under oligopoly is too small compared with the socially optimal one

(columns 4 and 7). The oligopolistic stock of the durable good is inefficiently small for

small n and inefficently large for large n (columns 5 and 8). Alltogether, the amount

of solid waste is greater under oligopoly than in the social optimum independent of the

number of firms (columns 6 and 9). However, this is not true if we consider a relatively

small external damage of 100 $ per unit (rows 9 to 12). The decrease in the socially

optimal durability is then relatively small (column 4) and thus the amount of solid waste

under oligopoly can even be inefficiently small (for example row 9, columns 6 and 9).

The effects of Pigouvian taxation are pictured in rows 13 to 16 for great damage and

in rows 17 to 20 for small damage. For the computations in these rows, the tax rate

on waste has been simply set equal to the marginal damage. For both large and small
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environmental damage, the Pigouvian tax provides an incentive for the oligopolists to

choose the socially optimal durability (columns 4 and 7). In the case of large marginal

damage, however, the industry stock of the durable and thus the amount of the solid

waste under oligopoly is inefficiently small for finite n (rows 13 and 14, columns 5,6,8 and

9). This suggests that additionally a subsidy is required to correct the inefficiently small

industry stock. The Pigouvian taxation ensures efficiency only if the number of firms

becomes very large (row 16). Of course this is not surprising because for large n we reach

the case of perfect competition from the previous section. The special feature of the case

with small environmental damage is that Pigouvian taxation leads to an amount of solid

waste which can be socially optimal even for a finite n near to 48 (row 18). However, this

is a very special and highly random case.

In short we can conclude as follows. Analogously to the case of perfect competition

(see proposition 2), the product durability in a laissez-faire equilibrium under oligopoly

is inefficiently small when external environmental costs are explicitly taken into account.

However, in contrast to the perfect competitive outcome, the amount of solid waste can

be smaller than in the social optimum due to the inefficiently small industry stock. Pigou-

vian taxation (or the extension of the producer responsibility) indeed ensures an efficient

product design under oligopoly but the amount of solid waste is inefficiently small in

most cases due to an inefficiently small industry stock of the durable good. Hence, we

would expect that efficiency requires an additional policy instrument like a subsidy on

the oligopolist’s stock of the durable.

4 Multi-Plant Monopoly

The numerical computations of the oligopoly case show that the Pigouvian taxation under

imperfect competition is not sufficient for allocative efficiency because there is a second

distortion with respect to the industry stock of the durable. However, it is somewhat

unsatisfactory to obtain this result only on the basis of numerical simulations. Therefore,

in this final section we will establish a similar result in the more general model for the

extreme case of imperfect competition, namely for the monopoly case. We will also show

that there is a crucial difference between monopoly and oligopoly.

One possibility to model the monopoly is to consider a firm with only one plant in the

absence of any competitor (n = 1 in the analysis of section 3). As Kamien/Schwartz

(1974) show, such a monopolist tends to design less durable consumption goods than

firms under perfect competition. Swan (1977), however, argues that this model approach

does not provide a sound basis to compare a monopoly with perfect competition because

a one-plant monopoly is compared with a multi-plant competitive industry. He considers

a monopoly with an infinte number of plants and shows durability to be the same under

monopoly and perfect competition. We agree with Swan’s argument and concentrate on

the analysis of a multi-plant monopoly. The monopolist faces the problem of solving

max
y(t),s,δ,n

∫ ∞

0

e−ρt
(
R(nc) − nK(y, s, δ)− nτyy − n(τwδ + τc) c

)
dt (30)
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subject to (1). This problem is very similar to the profit-maximization under competi-

tion in (20). However, the monopolist’s revenue R(nc) = ncP (nc) depends on the total

stock of the durable rather than on the individual plant’s stock. Thus, R′(nc) equals

P (nc) + ncP ′(nc) and R′′ < 0 implies the revenue function to be concave in the total

stock of the durable. Moreover, the monopolist has to pay taxes for every plant. This

assumption is helpful when the monopoly solution is compared with the solution under

perfect competition. Furthermore, for the sake of simplicity, we only consider the case of

an endogenous number of plants.

According to the social planner the monopolist proceed step by step. First, she de-

termines the time path of the production rate and the stock of the durable good for

given values of the plant size, the durability and the number of plants. This problem is

solved with the same optimal control methods already used for the solution of welfare

maximization in section 2. Again the solution ym(t; s, δ, n) and cm(t; s, δ, n) has the same

form as (9) but with different definitions of c∗ and λ. Second, she inserts this solution

into the objective functional in (30) to get the maximum profit as a function of the plant

size, the durability and of the number of plants. From this function we easily obtain the

profit-maximizing plant size

sm =
[α − (ρ + δ)(M(δ) + τy) − τwδ − τc] (ρ + δ)

2 [(ρ + λ)2 − (ρ + δ)2]
(31)

with λ :=
√

(ρ + 2δ)2 + 4βn − ρ)/2 > δ. The steady state value for the plant’s stock of

the durable can be calculated as

c∗ =
[α − (ρ + δ)(M(δ) + τy) − τwδ − τc] (ρ + λ)

2λ [(ρ + λ)2 − (ρ + δ)2]
. (32)

The maximum profit as a function of the durability and the number of plants is Πm(δ, n) =

nA2(δ)/4ρB(δ, n) with A(δ) := α − (ρ + δ)(M(δ) + τy) − τwδ − τc and B(δ, n) := (ρ +

λ)2 − (ρ + δ)2. The first and second-order conditions for the profit-maximizing durability

are Πm
δ = 0 and Πm

δδ < 0 or

−A′(δ) +
A(δ)Bδ(δ, n)

2B(δ, n)
= 0 and A′′(δ) <

A(δ)Bδδ(δ, n)

2B(δ, n)
− A′ 2(δ)

A(δ)
, (33)

respectively. The derivative of the maximum profit with respect to n is

Πm
n (δ, n) =

A2(δ)

4ρB(δ, n)

(
1 − 2βn(ρ + λ)

(ρ + 2λ)B(δ, n)

)
. (34)

Analogously to the social optimum, we can now establish the following lemma.

Lemma 3 (Monopoly) If the numbers of plants is endogenous, then the monopoly so-

lution has the following properties:

(i) The number of plants tends to infinity and the steady state is reached immediately.

The profit of the monopoly is greater than zero.

(ii) The individual plant size sm, production rate ym(t) and stock cm(t) of the durable good
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converge to zero for all t.

(iii) The total stock of the durable good becomes

Cm := lim
n→∞

ncm(t) =
α − (ρ + δm)(M(δm) + τy) − τwδm − τc

2β
for all t. (35)

(iv) The product durability 1/δm satisfies the condition

(ρ + δm)M ′(δm) + M(δm) + τw + τy = 0. (36)

Proof: As Swan (1977), p. 233 shows in more detail, Πm
n from (34) is positive for every

finite n and zero for infinite n. Thus, the profit-maximizing number of plants is infinite

which implies λ → ∞, i.e. the steady state is reached immediately. The proof of (i) is

completed by computing limn→∞ Πm(δm, n) = A2(δm)/4ρδm > 0. For n → ∞, the proof

of (ii) to (iv) is exactly the same as that for the free entry equilibrium in lemma 2. �

Several findings of lemma 3 coincide with previous results from the literature: First,

the unregulated monopolist captures a part of the consumer surplus, and thus her profits

are positive. Second, as in the static textbook model of price theory, the monopolist’s

stock of the consumption good is half of the total stock under perfect competition due

to the assumption of linear demand and quadratic production cost (compare (35) with

(28)). Third, by comparing (36) with (29) we see that the product durability under

monopoly equals the one under perfect competition. This is a generalization of Swan’s

independence result (for our framework the independence result is shown by Swan (1977))

to the case in which several tax rates are taken into account. Note, that the introduction

of the environmental damage has no effect on the independence result since the damage

influences only the socially optimal durability.

Due to the second and third findings we can conclude that the amount of solid waste

under monopoly is half of that under perfect competition. However, the comparison of

the monopoly with the social optimum is of greater interest. Consider first the case of

a laissez-faire economy. The durability under monopoly equals the one under perfect

competition according to Swan’s independence result. Thus, zero tax rates imply the

durability under monopoly to be smaller than in the social optimum owing to proposition

2. Moreover, by inserting the zero tax rates into (35) and comparing this with (18) we

see that the difference between the monopolist’s stock of the durable good and the social

optimal one is not unique in sign. Thus we have proved the following proposition.

Proposition 4 Suppose that all tax rates are zero. It then follows that the product dura-

bility under monopoly is inefficiently small whereas both the total stock of the durable good

as well as the amount of solid waste under monopoly can be greater, equal or less than in

the social optimum.

The results of proposition 4 are analogous to the results for the oligopoly in the previous

section: First, under laissez-faire the monopolist chooses an inefficiently small product

durability because she doesn’t internalize the external cost of the solid waste. Second,

the stock of the durable good can be smaller or greater than the socially optimal one
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because the model exhibits two opposite effects on the stock of the durable good: The

environmental externality tends to increase the stock beyond its efficient level whereas the

market power of the monopoly tends to decrease the stock below its efficient level. Since

this leads to an ambiguous relationship between the monopolist’s stock of the durable

and the socially optimal one and since the durability is different in both cases, we are not

able to say anything about the efficiency of the solid waste flow under monopoly.

Now turn to the case in which the policy maker uses taxes to influence the behaviour

of the monopolist. The following proposition is easily been proved by comparing (35) and

(36) of lemma 3 with (18) and (19) of lemma 1.

Proposition 5 The allocation under the multi-plant monopoloy is socially optimal if and

only if τw + τy = MD and τc = ρ(τw − MD) − βCo.

In contrast to the case of perfect competition (see proposition 3), proposition 5 shows that

Pigouvian taxation alone does not lead to a socially optimal outcome under monopoly

because τw = MD implies τc = −βCo < 0. This result is intuitively clear because the pol-

icy maker has to correct two market imperfections, namely the environmental externality

and the market power of the monopoly. Hence, she internalizes the external environ-

mental damage by using the Pigouvian tax and subsidizes the stock of the durable good

because once the externality is internalized the monopolist’s supply is inefficiently small.

This finding corresponds with previous contributions on the relationship between Pigou-

vian taxation and the market structure (for a survey see Xepapadeas (1997), chapter

5) in which it is shown that the optimal effluent tax under monopoly is smaller than the

Pigouvian tax, i.e. smaller than the external environmental damage. Indeed, the waste

tax in the above case equals the marginal damage, but the overall tax burden of the

monopolist is lower than this marginal damage because she receives a subsidy for the

stock of the durable. A similar interpretation of proposition 5 is possible when the policy

maker is not allowed to tax waste at a rate equal to the marginal environmental damage.

For example, if political constraints require the waste tax to be lower than the marginal

damage (τw < MD), then the policy maker can achieve efficiency by an additional tax

τy = MD− τw > 0 on the output and a subsidy τc = ρ(τw −MD)− βCo < 0 on the stock

of the durable. The subsidy again is greater than under perfect competition (see p. 17)

due to the correction of two market imperfections being required.

It is interesting to note that the optimal tax schemes in the case of the monopoly

are almost similar to those suggested by the numerical simulations of the oligopoly. The

Pigouvian tax in both cases is capable of providing the incentive for an efficient product

design, i.e. an efficient durability (for monopoly compare (36) for τw = MD and τy = 0 with

(19), for the oligopoly see table 2 rows 13 to 20). Under both market structures, however,

Pigouvian taxation generally doesn’t lead to an efficient amount of solid waste since there

is an additional distortion due to the stock of the durable. The notable difference between

monopoly and oligopoly is that under the latter market structure there are exceptions to

the just mentioned result, i.e. there are some special cases (row 18 of table 2) in which

Pigouvian taxation ensures the overall efficiency of the oligopoly at least in the steady

state. Such special cases are not possible under monopoly.
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5 Conclusion

The proceeding analysis investigated a dynamic model of an industry which produces

a durable consumption good. With respect to environmental economics, the distinctive

feature of the model is that the product durability is endogenously determined by the

producers in the process of product design. With respect to the literature on product

durability, the distinctive feature of the model is that the scrapped units of the durable

good turn into solid waste and cause external environmental damage. This environmental

damage c.p. increases with an increase in the industry stock of the durable as well as with

a decrease in the product durability. The principal insights of the model are:

(a) The socially optimal durability of the consumption good increases with an increasing

marginal environmental damage, with an expanding market for durables and with a de-

creasing discount rate.

(b) In the laissez-faire equilibrium under perfect competition, the producers choose an

inefficiently small product durability whereas the industry stock of the durable and the

amount of solid waste are inefficiently large. This market failure can be corrected simply

by Pigouvian taxation, i.e. by a tax on waste equal to the marginal environmental costs.

(c) In an unregulated equilibrium under imperfect competition, the durability is also too

small compared with the socially optimal one while the industry stock of the durable

good and the amount of solid waste, however, can be greater, equal or less than in the

social optimum. Pigouvian taxation leads to an efficient durability but in general not to

an efficient amount of solid waste because there is a second market imperfection due to

the stock of the durable. For this imperfection an additional subsidy is required.

When the Pigouvian taxation is interpreted as an extension of the producer responsibility

to the entire product-life-cycle, it turns out that the ability of this recently discussed

instrument depends on the market structure. For every market structure the extension of

the producers responsibility is capable of restoring the efficient product design, i.e. ensures

an efficient product durability. However, under imperfect competition it is not sufficient

to ensure overall efficiency. In this case further policy instruments are required.

Of course a limitation of the present paper is that the results of the oligopoly are

restricted to numerical simulations. Especially for the analysis of the adjustment path

a more general analysis is warranted. But to obtain useful results another framework

like the two-period model already used in the literature is probably required because a

dynamic game like the one used in the present paper is too complex to get useful results.
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Appendix

A1. Solving the dynamic system (1) and (8)

Take the steady state as particular solution. From (1) and (8) the steady state values are

c∗ =
α − (ρ + δ)(M(δ)− 2s) − γδ

2δ(ρ + δ) + βn + 2εδ2n
, y∗ = δc∗ (37)

The general solution to the inhomogeneous system (1) and (8) then reads yo(t; s, δ, n) =

a1e
λ1t + a2e

λ2t + y∗ and co(t; s, δ, n) = a3e
λ1t + a4e

λ2t + c∗ where a1, . . . a4 are constants to

be determined. λ1 and λ2 are roots of the characteristic equation λ2 − ρλ − δ(ρ + δ) −
(βn + 2εδ2n)/2 = 0. The roots are of opposite sign, thus the steady state is a saddle

point and we are allowed to concentrate on the stable part of the solution. Hence, take

the negative root only and call it −λ where λ is defined in (10). The general solution

simplifies to

yo(t; s, δ, n) = a1e
−λt + y∗, co(t; s, δ, n) = a3e

−λt + c∗. (38)

To determine the constants a1 and a3, use the initial conditions c(0) = 0 and ċ(0) = y(0) to

get a3 = −c∗ and a1 = (λ− δ)c∗. Inserting this into (38) and rearranging proves equation

(9) as the solution to the dynamical system (1) and (8). Note, that by rearranging (10)

to ρ + 2λ =
√

(ρ + 2δ)2 + 2βn + 4εδ2n, squaring and simplifying we get

2λ(ρ + λ) = 2δ(ρ + δ) + βn + 2εδ2n. (39)

With the help of this equation the expression for c∗ in (37) simplifies to (10).
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A2. Comparative dynamic results for the social optimum

For notational simplicity denote the socially optimal values by δ and C instead of δo and

Co. Then totally differentiating (18) and (19) yields the matrix equation:
 1

2εδC

β + 2εδ2

2εδ 2M ′ + (ρ + δ)M ′′ + 2εC







dC

dδ


 =




dα − Cdβ − Mdρ − δdγ − 2δ2Cdε

β + 2εδ2

−M ′dρ − dγ − 2δCdε


 .

Denote the determinant of the first matrix by ∆. Then ∆ = 2M ′(δ) + (ρ + δ)M ′′(δ) +

2βεC/(β + 2εδ2) > 0 due to assumption (7). The following comparative dynamic results

are obtained by applying Cramer’s rule:

∂δ

∂α
= − 1

∆

2εδ

β + 2εδ2
< 0,

∂C

∂α
=

1

∆

2M ′ + (ρ + δ)M ′′ + 2εC

β + 2εδ2
> 0,

∂δ

∂β
=

1

∆

2εδC

β + 2εδ2
> 0,

∂C

∂β
= − 1

∆

C [2M ′ + (ρ + δ)M ′′ + 2εC]

β + 2εδ2
< 0,

∂δ

∂ρ
=

1

∆

(
2Mεδ

β + 2εδ2
− M ′

)
> 0,

∂C

∂ρ
=

1

∆

2M ′εδC −M [2M ′ + (ρ + δ)M ′′ + 2εC]

β + 2εδ2
< 0,

∂δ

∂γ
= − 1

∆

β

β + 2εδ2
< 0,

∂C

∂γ
= − 1

∆

[2M ′ + (ρ + δ)M ′′]δ
β + 2εδ2

< 0,

∂δ

∂ε
= − 1

∆

2βδC

β + 2εδ2
< 0,

∂C

∂ε
= − 1

∆

2δ2C [2M ′ + (ρ + δ)M ′′]
β + 2εδ2

< 0.

The signs of these partial derivatives are summarized in the first two rows of table 1.

The signs for the change in the amount of solid waste are easily obtained by ∂(δC)/∂k =

C · ∂δ/∂k + δ · ∂C/∂k, k = α, β, ρ, γ, ε.
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Computations not to be published

Proof of the Equation (4)

The second equation in (3) is an inhomogeneous linear differential equation in µ. The

solution to the homogenous part µ̇ − δµ = 0 can be written as

µ(t) = aeδt (40)

where a is an arbitrary constant. Now use the method of variation of the parameter. Let

a = a(t), differentiate (40) with respect to time and insert the result together with (40)

into the inhomogeneous differential equation in (3). Solving the resulting expression with

respect to ȧ(t) yields

ȧ(t) = −ne−(ρ+δ)t
(
S ′(nc(t)) − δD′(nδc(t))

)
from which we obtain

a(t) = b − n

∫ t

0

e−(ρ+δ)v
(
S ′(nc(v))− δD′(nδc(v))

)
dv (41)

with b as the constant of integration. Now insert (41) in (40) to obtain

µ(t) =
[
b − n

∫ t

0

e−(ρ+δ)v
(
S ′(nc(v))− δD′(nδc(v))

)
dv

]
eδt. (42)

To determine b use the transversality condition limt→∞ µ(t) = 0. Hence,

lim
t→∞

µ(t) = 0 ⇔ b = n

∫ ∞

0

e−(ρ+δ)v
(
S ′(nc(v))− δD′(nδc(v))

)
dv.

Replacing b in (42) by this expression and simplifying yields equation (4).

Computation of the maximum welfare Ṽ (s, δ, n)

First, insert the consumer surplus as soon as the production cost and the environmental

cost into the objective functional (2) to get the maximum welfare

Ṽ (s, δ, n) = n

∫ ∞

0

e−ρt

(
(α − γδ) c(t) − βn + 2εδ2n

2
c2(t)− y2(t) − (M − 2s) y(t) − s2

)
dt

where y(t) and c(t) stand for the welfare-maximzing production rate and stock of the

durable good from equation (9). By using these equations we can compute the single

integrals as ∫ ∞

0

e−ρt (α − γδ) c(t)dt = c∗λ
α − γδ

ρ(ρ + λ)
,

∫ ∞

0

e−ρt βn + 2εδ2n

2
c2(t)dt = c∗2λ2 βn + 2εδ2n

ρ(ρ + λ)(ρ + 2λ)
,
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∫ ∞

0

e−ρt y2(t)dt = c∗2λ2 2δ(ρ + δ) + ρ(ρ + λ)

ρ(ρ + λ)(ρ + 2λ)
,

∫ ∞

0

e−ρt (M − 2s) y(t)dt = c∗λ
(M − 2s)(ρ + δ)

ρ(ρ + λ)
,

∫ ∞

0

e−ρt s2dt =
s2

ρ
.

Now insert these expressions in Ṽ (s, δ, n) and rearrange. The result is

Ṽ (s, δ, n) =
n

ρ

(
c∗2λ2z − s2

)
(43)

with

z :=
α − (ρ + δ)(M − 2s) − γδ

c∗λ(ρ + λ)
− ρ(ρ + λ) + 2δ(ρ + δ) + βn + 2εδ2n

(ρ + λ)(ρ + 2λ)

(39)
=

α − (ρ + δ)(M − 2s) − γδ

c∗λ(ρ + λ)
− 1

(10)
= 2 − 1 = 1.

For z = 1, equation (43) equals Ṽ (s, δ, n) in the text.

Derivation of the equation (21)

If the plant size and the product durability are held constant, (20) becomes a problem of

optimal control with the present-value Hamiltonian

H = e−ρt
(
R(c) −K(y, s, δ)− τyy − (τwδ + τc) c

)
+ µ

(
y − δc

)
.

Because the term in the first brackets is concave in the production rate and the stock of

the durable, the necessary and sufficient conditions for a maximum are

Hy = −e−ρt
(
Ky(y, s, δ) + τy

)
+ µ = 0, µ̇ = −e−ρt

(
R′(c) − τwδ − τc

)
+ δµ. (44)

Together with the transversality condition limt→∞ µ(t) = 0, the last of these equations

can be solved by the same procedure as in the welfare maximization. The result is

µ(t) =

∫ ∞

t

e−ρve−δ(v−t)
(
R′(c(v))− τwδ − τc

)
dv. (45)

µ(t) equals the net marginal value (marginal revenue less tax rates) of a marginal increase

in the firm’s stock of the durable good in period t and therefore may be interpreted as

firm’s shadow price of c. Combining (45) with (44) yields the marginal cost/marginal

revenue condition for the production rate

Ky(y(t), s, δ) + τy +

∫ ∞

t

e−(ρ+δ)(v−t)(τwδ + τc)dv =

∫ ∞

t

e−(ρ+δ)(v−t)R′(c(v))dv.

The total marginal cost (marginal production cost plus marginal tax payments) equals

the marginal revenue of a marginal increase in output. Differentiating this condition with

respect to time and rearranging yields (21).
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Computation of the maximum profits Π̃c(s, δ)

Insert the second-order approximation together with the equilibrium condition c+C̃ = nc

into the objective functional (20) to obtain the maximum profit of the individual firm

Π̃c(s, δ) =

∫ ∞

0

e−ρt
(
(α − τwδ − τc) c(t)− βn c2(t)− y2(t) − (M − 2s + τy) y(t) − s2

)
dt.

For short, y(t) and c(t) stand for the solution of profit-maximization, yc(t; s, δ) and

cc(t; s, δ), which is composed of (9) and (23). Use these equations to compute the single

integrals as ∫ ∞

0

e−ρt (α − τwδ − τc) c(t)dt = c∗λ
α − τwδ − τc

ρ(ρ + λ)
,

∫ ∞

0

e−ρt βn c2(t)dt = c∗2λ2 2βn

ρ(ρ + λ)(ρ + 2λ)
,

∫ ∞

0

e−ρt y2(t)dt = c∗2λ2 2δ(ρ + δ) + ρ(ρ + λ)

ρ(ρ + λ)(ρ + 2λ)
,

∫ ∞

0

e−ρt (M − 2s + τy) y(t)dt = c∗λ
(M − 2s + τy)(ρ + δ)

ρ(ρ + λ)
,

∫ ∞

0

e−ρt s2dt =
s2

ρ
.

Inserting these expressions into Π̃c(s, δ) yields

Π̃c(s, δ) =
1

ρ

(
c∗2λ2z − s2

)
with

z :=
α − (ρ + δ)(M − 2s + τy) − τwδ − τc

c∗λ(ρ + λ)
− ρ(ρ + λ) + 2δ(ρ + δ) + 2βn

(ρ + λ)(ρ + 2λ)

(23)
= 2 − ρ(ρ + λ) + 2δ(ρ + δ) + 2βn

(ρ + λ)(ρ + 2λ)

(23)
= 2 − (ρ + λ)(ρ + 2λ) + β(n − 1)

(ρ + λ)(ρ + 2λ)

= 1 − β(n− 1)

(ρ + λ)(ρ + 2λ)
.

where in the second row the relation 2λ(ρ+λ) = 2δ(ρ+δ)+β(n+1) due to the definition

of λ in (23) has been employed.

Derivation of the equtions (31), (32) and Πm(δ, n)

For given plant size, durability and number of plants, (30) becomes a problem of optimal

control with the present-value Hamiltonian

H = e−ρt
(
R(nc) − nK(y, s, δ)− nτyy − n(τwδ + τc) c

)
+ µ

(
y − δc

)
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Since the term in the first brackets is concave in the production rate and the stock of the

durable, the necessary and sufficient conditions for a maximum are

Hy = −ne−ρt
(
Ky(y, s, δ) + τy

)
+ µ = 0, µ̇ = −ne−ρt

(
R′(nc) − τwδ − τc

)
+ δµ. (46)

Together with the transversality condition limt→∞ µ(t) = 0, the last of these equations

can be solved by the same procedue as in the welfare maximization. The result is

µ(t) = n

∫ ∞

t

e−ρve−δ(v−t)
(
R′(nc(v))− τwδ − τc

)
dv. (47)

µ(t) may be interpreted as the monopolist’s shadow price of c. Combining (47) with (46)

yields the marginal cost/marginal revenue condition for production rate

Ky(y(t), s, δ) + τy +

∫ ∞

t

e−(ρ+δ)(v−t)
(
τwδ + τc

)
dv =

∫ ∞

t

e−(ρ+δ)(v−t)R′(nc(v))dv.

Differentiating this condition with respect to time and rearranging yields

ẏ =
(ρ + δ)Ky(y, s, δ) + (ρ + δ)τy − P (nc) − ncP ′(nc) + τwδ + τc

Kyy(y, s, δ)
. (48)

Using the second-order approximation, this differential equation becomes

ẏ = (ρ + δ)y + βnc − [α − (ρ + δ)(M(δ)− 2s + τy) − τwδ − τc]/2 (49)

which together with (1) determines the profit-maximizing production rate and stock of

the durable good. The solution to this system of differential equation, ym(t; s, δ, n) and

cm(t; s, δ, n), equals exactly (9) where, however, c∗ and λ are replaced by

c∗ :=
α − (ρ + δ)(M(δ)− 2s + τy) − τwδ − τc

2λ(ρ + λ)
, λ :=

√
(ρ + 2δ)2 + 4βn − ρ

2
. (50)

Now insert the second-order approximation into the objective functional in (30) to get

the maximum profit of the monopolist

Π̃m(s, δ, n) = n

∫ ∞

0

e−ρt
(
(α − τwδ − τc) c(t) − βn c2(t) − y2(t)− (M − 2s + τy) y(t)− s2

)
dt.

Replace y(t) and c(t) by ym(t; s, δ, n) and cm(t; s, δ, n) and compute the single integrals as∫ ∞

0

e−ρt (α − τwδ − τc) c(t)dt = c∗λ
α − τwδ − τc

ρ(ρ + λ)
,

∫ ∞

0

e−ρt βn c2(t)dt = c∗2λ2 2βn

ρ(ρ + λ)(ρ + 2λ)
,

∫ ∞

0

e−ρt y2(t)dt = c∗2λ2 2δ(ρ + δ) + ρ(ρ + λ)

ρ(ρ + λ)(ρ + 2λ)
,

∫ ∞

0

e−ρt (M − 2s + τy) y(t)dt = c∗λ
(M − 2s + τy)(ρ + δ)

ρ(ρ + λ)
,

∫ ∞

0

e−ρt s2dt =
s2

ρ
.
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Inserting these expressions into Π̃m(s, δ, n) yields

Π̃m(s, δ, n) =
n

ρ

(
c∗2λ2z − s2

)
(51)

with

z :=
α − (ρ + δ)(M − 2s + τy) − τwδ − τc

c∗λ(ρ + λ)
− ρ(ρ + λ) + 2δ(ρ + δ) + 2βn

(ρ + λ)(ρ + 2λ)

(50)
= 2 − ρ(ρ + λ) + 2δ(ρ + δ) + 2βn

(ρ + λ)(ρ + 2λ)
= 1

The last equality is obtained by 2λ(ρ + λ) = 2δ(ρ + δ) + 2βn due to the definition of

λ in (50). The profit maximizing plant size (31) is obtained from Π̃m
s = 0, where the

second-order condition Π̃m
ss < 0 is satiesfied due to λ > δ. Inserting (31) in c∗ from (50)

and Π̃m from (51) yields (32) and Πm(δ, n) in the text.


